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Executive Summary 

The content of the current deliverable deals with the final implementation of the sensor 
modules of WP2 and provides suggestions for the best practices in case of drawbacks during 
future data acquisition. The data collected in the Phase I dataset have been exploited to 
carry out an analysis and refinement of the filtering algorithms; no particular issues were 
found related to the acquisition of the raw data. 
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1 WP2 goals and achievements

The general objective of WP2 is to provide guidelines and best practices for
the configuration, calibration and synchronization of the sensor modules that
constitute the core of MAMEM technology. Furthermore, WP2 deals with the
acquisition and preprocessing (filtering) of the raw signals acquired by the sen-
sors.

These activities have been undertaken in three separate tasks, one for each
sensor module:

• T2.1 – Configuration, calibration and noise-reduction in eye tracking move-
ments

• T2.2 – Configuration, calibration and noise-reduction in EEG signals

• T2.3 – Configuration, calibration and noise-reduction in bio-measurements

Finally, task T2.4 had the role to optimize and integrate the previous activities.
Tab. 1 summarizes the results achieved before starting the ending part of WP2.

Tab. 1: Results achieved for WP2 before the ending part.
Commitments Progress

Device selection based on Defined sensors for both Heavyweight and Lightweight
project requirements configuration (D2.1 [5] and D4.2 [8])

Configuration and Calibration All configuration and calibration procedure defined
and described (D2.1 [5] and D4.2 [8])

Signal Synchronization and Sensors to middleware wrappers implemented and
data acquisition tested, synchronization procedure defined and tested

successfully with minor issues on EEG Lightweight
headset fixed (D2.2 [6])

Noise and artifact reduction Bio signal recorder and ET filter algorithms
implemented (D3.1 [7]). EEG filters implemented
on Matlab (D2.1 [5], D2.2 [6]), then ported to C/C++

Near real time optimization Trials of Phase I was completed without relevant
issues, in terms of signal acquisition (only some
drawbacks due to heavyweight eyetracker overheating)

The content of the current deliverable deals with the final implementation
of the sensor modules and provides suggestions for the best practices in case of
drawbacks during future data acquisition.

From the trials acquired for the Phase I dataset [26] no issues were found
concerning the low-level modules implemented so far. Therefore the last part of
WP2 mainly concerned the improvement of the signal quality. To accomplish
this, improvements were made both in terms of hardware and software.

Regarding the hardware, in order to obtain EEG signals with a quality better
than the Emotiv Epoc headset (used as lightweight device in the trials of Phase
I dataset), ENOBIO 8 has been selected as new lightweight EEG headset to be
used in the final phase of the project. The features of ENOBIO 8 are detailed
in Section 3.1.

Concerning the software, the data collected in the dataset have been used
to improve the filtering algorithms of the data used in MAMEM project (eye-
tracker data, EEG signals and Galvanic Skin Response). Moreover, upon the
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experience gained by the inspection of Phase I dataset, a list of best practices
and recommendations have been identified and summarized in the following
of the deliverable: Section 2 concerns the final tuning of eye tracker module;
Section 3 deals with the EEG module, and finally Section 5 is about GSR data.

Section 4 contains a new kind of analysis on EEG data, that is more ad-
vanced than “simple” filter preprocessing. The aim of this study is to devise a
methodology that can measure the quality of the acquired EEG signals. This
quality measure could be very useful in future developments: a continuous bad
quality index found on a specific channel may rise an online warning that the
corresponding electrode needs an inspection (i.e. the index can substitute in a
first run the standard ohmmeter check procedure described in deliverable D4.2
to asses the quality of the EEG data to be acquired). Also in this case, the trials
of Phase I dataset have been used in the tuning and evaluation of the proposed
method. Although this task is more suitable for the Middleware layer of WP4
(because it is more than raw data filtering of WP2 and less than classification
algorithms in WP3, applied to the EEG potentials related to the use of the
system), the study is described here for convenience of writing and because of
the connections with the noise to be removed.



13

2 Final tuning about eye tracker data acquisition and best
practices

Several factors influence gaze estimation of remote eye tracking systems. Users
may move their head, change their visual angle in relation to the system or
wear visual aid that distorts the recorded image and leads to problems in the
estimation of gaze. Furthermore, there are environmental influences as ambient
lighting or the hardware itself bears limitations like camera sensor resolution
or the implemented calibration algorithm. These factors lead to problems both
in accuracy and precision. Accuracy, also referred to as Gaze Drift, describes
the average distance of gaze estimation to the true user fixation. Precision, also
referred to as Gaze Jitter, describes the spread of gaze samples for a fixation
(see Fig. 1).

Fig. 1: Visual explanation for Gaze Drift (accuracy) and Gaze Jitter (precision).

2.1 Improving precision
To improve precision, we apply a combination of weighted smoothing of gaze
samples over a sliding time window, a saccade detection and finally an outlier
correction [14].

2.1.1 Weighted average

A basic attempt to smooth gaze data is to collect samples over time and to
accumulate their coordinates. This can be performed for a sliding time window,
to cover e.g., the current user fixation but not the whole gaze history. By
declaring a gaze sample at the current time t as xt, N as window size and w
as applied weight per sample, we can define the following general formula to
compute the weighted average of gaze x̂t:

x̂t =

N−1∑
i=0

wi∑
j wj

xt−i (1)

The weight w can be defined by an additional kernel function, which takes
the age of the sample into account. Literature names three common kernels to
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calculate a weight per sample in the window:

Linear Kernel wi = 1. Every sample is weighted equally

Triangular Kernel wi = N − i. Newest sample is weighted the highest, oldest
with 1.

Gaussian Kernel wi = e−
i2

2σ , where σ =
√
−(N−1)2
2 ln 0.05 , assign the oldest sample in

the window a weight of 0.05.

While all three kernels have been integrated to GazeTheWeb, the best results
are to be expected from the Gaussian kernel [14]: hence, it has been chosen as
weighting kernel for the second trial phase.

2.1.2 Saccade detection

The described approach is based on the assumption that the gaze samples inside
the sliding time window belong to a single fixation. This is not the case when
the user performs a saccade. Then the window might contain samples from two
or more fixations. Averaging these samples would produce a fixation somewhere
in the middle between the contained fixations, possibly on a region which the
user never fixated. Therefore, the sliding window for filtering is limited to
the current fixation by using a distance threshold to distinguish between gaze
samples belonging to the current fixation or another one. The current fixation is
then defined as gaze samples which distance is successive below this threshold,
starting from the latest.

As GazeTheWeb is rendered 60 times a second on the screen, in every frame
the available gaze samples are iterated from newest to oldest, until the threshold
is exceeded by the spatial distance of two successive sample. The collected
samples are filtered and used for further input handling.

2.1.3 Outlier correction

Eye tracking may produce single outliers, e.g., when a reflection is on the camera
or the data transfer suffers of an error. This may produce a single outlying
gaze sample, which would prohibit a proper filtering of a fixation as described
before. Therefore, when going from the newest to the oldest sample within the
sliding window, for each sample that is classified to belong potentially to another
fixation, the previous and next sample are checked to belong to the same fixation
according to the spatial distance of the coordinates and the threshold. If this
is the case, the currently classified sample is discarded for the filter process as
outlier and the filtering is continued. Otherwise the sample collection is stopped
and the weighted average of the collected samples is calculated.

2.2 Improving accuracy

To improve accuracy, we offer users a hands-free activation of recalibration and
we will evaluate the benefits of a novel implicit online drift correction, which is
based on user interactions.
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2.2.1 Calibration Process

For the second trial phase, myGaze eye trackers will be utilized for gaze estima-
tion. We call the calibration procedure provided by the accompanying API via
iV_Calibrate(), in order to setup the system for usage. The API provides a
5-point-calibration, where the gaze of the user must follow a dot on the screen.
The dot pauses on five distinct positions, for which the fixation data is collected
automatically. For each calibration point, the quality of the acquired data can
be checked. In case of failure a new attempt is initiated through calling the
function iV_RecalibrateOnePoint(pointNumber).

Through changes in environmental conditions or user positioning, the cali-
bration may break during usage and the accuracy of gaze estimation decreases.
In order to provide to motor-impaired users an accessible way to trigger a recal-
ibration in addition to the initial calibration after application start-up, the user
can close their eyes for a predefined number of seconds. After this time, an alert
is emitted and the screen changes, as depicted in Fig. 2. The user is presented
two dwell time based buttons. One small one on the left side to continue with
browsing and a big one on the right side to start recalibration. The size of the
button is sufficient to trigger recalibration even for a very bad calibration.

Fig. 2: Screen for recalibration.

2.2.2 Drift map

In addition to the explicit calibration of the eye tracking environment through
the myGaze software, we plan to perform an implicit on-top calibration with a
drift map. For this approach we assume the user to look at the center of buttons
while dwelling them for activation, e.g., the back button in the browsing interface
or the keys of the text input screen. For each successful activation of such a
button we measure the distance between center of the button and the estimated
and filtered gaze coordinate of the user. This drift data is accumulated in a
grid. The data from the grid can be utilized to offset the estimated gaze and
eventually to improve the accuracy of the system.
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As this is a novel idea, we plan to activate and deactivate this feature on daily
base without further notification of the users. Since the approach is not directly
visible to the user, we will receive unbiased feedback about the success of this
method by measuring the count of recalibrations and the general usage data.
The presence or absence of this feature will still allow the smooth interaction of
the participants and is not expected to cause any frustration to them, rather an
improvement of interaction with the activated system compared to the baseline.

2.3 Best practices
The myGaze eye tracking system works similarly to the heavy-weight SMI RED-
n with dark-pupil tracking. The eyes of the users are lit from both far ends of the
device. The camera sensor is placed in the center of the device. It records the
the eyes of the user which show reflections of the light sources. Both the dark
pupil and the reflections are detected on the image and used to estimate the
gaze. The systems lacks an additional centered light source next to the camera
sensor, which allows for a direct corneal reflection. This reflection would result
in a bright pupil in the recorded image, which is more robust to detect in case
of an externally caused reflection. Therefore, positioning the system nearby
a window or other light source should be avoided for a sufficient interaction
performance of the setup.
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3 Final tuning about EEG data acquisition and best
practices

During the creation of Phase I dataset no particular acquisition issues due to
the low level modules of the EEG devices were found. In any case, in order
to get a better EEG signal quality for the lightweight system, another device
has been considered as new EEG headset to be used during the Phase II tri-
als: the Neuroelectrics ENOBIO 8 [25], that will substitutes the Emotiv Epoc
previously discussed in D2.1 and D2.2. ENOBIO 8 is already compatible with
the Labstreaminglayer standard, that represents the low-level interface of the
Middleware, thus allowing a fast integration in the MAMEM platform; see Sec-
tion 3.1 for a detailed discussion of the features of the new lightweight headset.

Phase I dataset [26] (available at [11]) has been used also as a real benchmark
for the filtering algorithms proposed in D2.1, since this dataset can be regarded
much closer to the actual scenarios of Phase II compared to the SS-VEP datasets
(available at [9] and [10]) previously utilized in the analysis described in D2.2.
In particular, the combination of spatial filters such as CAR (Common Average
Reference) and Amuse has been investigated in Section 3.2, in order to find the
final recommendations for their future use. In D2.2 we compared several ways
to fix the independent components (ICs) computed by Amuse and the correction
of noisy ICs based on wavelet analysis was found to be the best (“WT cor” in
Section 4 of D2.2). Here only that method is further analyzed; in the following
it will be labeled with the more clear name “Wavelet-Amuse”.

Moreover, a novel algorithm based on robust estimation techniques, has been
proposed to remove the power-line interference in challenging conditions; Sec-
tion 3.3 explains in detail the theory behind the new algorithm and provides
an experimental evaluation of its effectiveness. A simplified version of the pro-
posed method has been integrated also in EB Neuro’s software products for the
analisys of EEG Evoked Potentials.

3.1 ENOBIO 8 as new lightweight headset

ENOBIO 8 is a wearable, wireless, portable electrophysiology sensor system for
the recording of electroencephalogram (EEG). Over 70 publications during the
last 10 years have been made possible using ENOBIO, which adds to the credi-
bility of the device. It was preferred to the previously selected Emotiv EPOC+
device, due to the higher quality of the captured signals and its modularity (i.e.
the position and the type of the electrodes is selected by the user, see Fig. 3).

ENOBIO 8 offers 8 channels plus 2 for reference for capturing the EEG sig-
nals. Apart from EEG, ENOBIO 8 is capable to record also electrooculogram
(EOG), electrocardiogram (ECG) and electromyogram (EMG). According to
our experience, ENOBIO 8 proved to be an invaluable asset for out-of-the-lab
experiments. The convenient use, modern and appealing look as well as its
almost no preparation time required is a key aspect for the MAMEM project
and its end target group of impaired people. ENOBIO 8 also allows offline data
storage by providing direct access to microSD card. With respect to software,
ENOBIO 8 is accompanied, at no additional fee, with NIC (the Neuroelectrics
Instrument Controller engine) that is in charge for controlling all Enobio sys-
tems. NIC provides real time access to physiological signal data (quality check,
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Fig. 3: ENOBIO 8 headset and its electrodes.

raw data, filtered data, spectral features, scalp maps, etc.) and is available for
both OS X (Mac) and Windows operating systems.

Finally, the greatest advantage ENOBIO 8 has to offer is the flexible elec-
trode placement with 39 possible positions based on the 10-10 system. Addi-
tionally it allows alternating between wet, dry and solid-gel (disposable pads
that are placed between the electrode and the head to increase conductivity)
electrodes with no effort as long as one owns the different types of electrodes
that can be obtained with a small additional cost. We must note here that
ENOBIO 8 is a CE certified medical device suitable for electrophysiological re-
search, medical application development and brain computer interfaces. The
detailed specifications of ENOBIO 8 device are outlined in Tab. 2.

Tab. 2: Neuroelectrics ENOBIO 8 specifications.
Specification Value

Number of Channels 8 Channels, flexible placement

Reference Electrodes In the CMS/DRL noise cancellation
configuration mastoids location

Bandwidth 0 to 125 Hz (DC coupled)

Sampling rate 500 SPS

Resolution 24 bits – 0,05 microvolt (µV)

Measurement Noise < 1 µV RMS

Input impedance 1 GΩ

Communication Bluetooth 3.0 and 2.1

Output EDF+, ASCII, NEDF data files or
TCP/IP raw data streaming

Storage MicroSD card for on-board storage

Battery USB rechargeable system using Li-Ion battery

Battery Duration Operating time up to 16 hours

Dimensions 60 × 85 × 20 mm

Weight 65 g

Lab Streaming Layer Direct Support

Certificate 93/42/CEE Medical Devices Directive (as amended
by 2007/47/CE Medical Devices Directive).
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3.2 Evaluation of CAR/Amuse in noisy scenarios
The EEG data of Phase I dataset have been utilized as a benchmark to refine the
parameters and find the final recommendations for the spatial filters CAR and
Wavelet-Amuse.The dataset contains several trials performed both on patients
and healthy subjects. The trials are divided into three cohorts accordingly to
the center (and related disability) where they have been recorded: AUTH cohort
(Parkinson disease), MDA cohort (neuromuscular disease) and SHEBA cohort
(spinal chord injury).

As a first analysis, the EEG data have been imported in the EEG Galileo
software (the commercial software developed by EB Neuro [13]) to carry out a
visual inspection of the signals and the effects of the EEG filtering process. After
the selection of EEG data chunks with challenging (but reasonable) noise, both
from healthy subjects and patients, the CAR and wavelet-Amuse filters1 have
been evaluated: in order to accomplish this the EB Neuro team has inserted
an ad-hoc call to the EEG filter library inside the processing pipeline code of
Galileo. Section 3.2.1 shows qualitatively the performance that the two filters
can achieve and their limits.

Then, a second analysis has evaluated the effects of the Amuse filter related
to the the classification of ErrPs potentials (in Section 3.2.2) and provides some
quantitative data about that.

3.2.1 Visual evaluation

Ocular artifacts The first example in Figs. 4–6 concerns ocular artifacts. Fig. 4
reports the unprocessed signal, while Fig. 5 illustrates the effect of the CAR
filter only: the filter reduces the artifacts in most of the channel, but not in the
frontal ones. Only the subsequent application of wavelet-Amuse removes the
ocular artifacts, by fixing the first five independent components (Fig. 6).

Channel highly disturbed In Fig. 7 channel O2 (plotted in red) is highly dis-
turbed, and the CAR filter cannot remove such an artifact (Fig. 8) because it is
not a common mode noise. Wavelet-Amuse must fix up to the first eight com-
ponents, but its effects is to change also channel Ft8 (cyan channel in Fig. 9);
furthermore, the frontal electrodes (top channels) remains very noisy.

Strong power-line interference Channels C3, P1, Pz, POz of Fig. 10 (plotted
in red) have a strong interference at 50 and 100 Hz that comes from the power
supply (In Fig. 10 the standard notch filter at 50 and 100 Hz is off to graphically
emphasize the interference). Fig. 11 shows the effect of CAR filter: although
in this case the notch filter is on, the interference is so high that it cannot
completely be removed and it is propagated to the other channels by the CAR
filter. Neither Wavelet-Amuse can remove such an interference (Fig. 12), but at
least it does not propagate it to the other channels.

Miscellaneous noise Fig. 13 shows a combination of several artifacts: muscular
and ocular artifacts, and a drift in a channel. Wavelet-Amuse can cope with two
of these disturbs: the ocular artifacts and drift, while muscular artifacts remain
(Fig. 14). An explanation of this fact will be provided later in Section 3.4.

1 see the filter library reported in [5].
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Fig. 4: Example of ocular artifacts (from healthy subject no. 4 of Sheba cohort,
SMR experiment with the heavyweight configuration).

Fig. 5: CAR filter reduce ocular artifacts in most of the channel but not in the
frontal ones.

Fig. 6: EEG data after fixing the first 5 components of Wavelet-Amuse decom-
position.
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Fig. 7: Highly disturbed data for channel O2, in red (patient no. 1 of SHEBA
cohort, SMR experiment with the heavyweight configuration).

Fig. 8: CAR filter can not remove the noise from channel O2.

Fig. 9: To remove the artifacts in channel O2, Wavelet-Amuse must fix the first
eight components, but its effect changes significantly also channel Ft8.
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Fig. 10: Strong power-line interference for channels C3, P1, Pz ans POz, in
red (from patient no. 5 of MDA cohort, SMR experiment with the
heavyweight configuration).

Fig. 11: CAR filter propagates the interference collected by electrodes C3, P1,
Pz, POz to the other channels. Moreover, some artifacts are now visible
in the mid-frontal electrodes (in cyan).

Fig. 12: Wavelet-Amuse (working on the first six components) is not able to
remove the power-line interference, but at least it does not propagate
it to the other channels.
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Fig. 13: Ocular artifacts in Af7, Fp1, Fp2, and Fpz; drift on Fp2, and several
muscular artifacts (from patient no. 5 of AUTH cohort, SMR experi-
ment with the heavyweight configuration).

Fig. 14: Wavelet-Amuse (working on the first seven-nine components) removes
the ocular artifacts and the drift on Fp2, but not the muscular artifacts.

Lightweight configuration So far, the examples come from acquisition with
the heavyweight configuration, but similar situations hold for the lightweight
system: as an example, Figs. 15 and 16 show that Wavelet-Amuse still removes
the ocular artifacts but not the other noise when it works with few (14) channels.

3.2.2 Wavelet-Amuse and ErrP classification performance

One of the aim of MAMEM project is the use of EEG signals in conjunction
with an eye-tracker in order to create a high-speed gaze-based keyboard.

This task is described in detail in deliverable D3.3 (to be published), where
it will be demonstrated that a specific neurophysiological event associated with
error perception is elicited during the visual mistyping perception, which is not
contaminated by eye movement artifacts. This event, which is a special case
of an ErrP, can serve as the basis for an automated Error Correction System
that originates directly from the users’ brain responses complemented by the
eye movement information and is able to improve the overall typing speed in
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Fig. 15: Ocular artifacts (inside the blue rectangle) in Af3, F7, Fc5, Fc6, F8,
plus other spread noise (from patient no. 5 of MDA. cohort, SMR
experiment with the lightweight configuration).

Fig. 16: Wavelet-Amuse (working on the first six components) removes the ocu-
lar artifacts from the area in the blue rectangle (compare with Fig. 15),
but not the spread noise.

gaze-based visual keyboard.
All the volunteers that joined the experiments (that will be released through

D3.3) had no known prior or current pathological neurological condition, and
their vision was normal or corrected to normal. EEG and gaze data were col-
lected by mean of the already acquisition tools developed for the MAMEM sys-
tem: to capture the brain’s electrical activity the heavyweight EBNeuro EEG
device was utilized (sampling rate at 256 Hz), while for the gaze information
the SMI myGaze eye-tracker was used (30 Hz); the devices were synchronized
by the LabStreamingLayer module of the Middleware [8].

To understand if the Wavelet-Amuse processing can improve the detection
of the ErrPs due to mistyping, an off-line experiment has been carried out by
integrating the filter in the preprocessing steps before the classification starts.

A subset of the subjects of the D3.3 experiments was considered for this
study, in function of the classification accuracy gained in their trials according
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Fig. 17: Evaluation of ErrPs accuracy as function of independent components
fixed by Wavelet-Amuse. For most of the subjects the accuracy does not
change significantly, with the exception of the worse case that increases
from 62.28% to 68.35%.

to the following criteria:

• the first two subjects with the highest accuracy (respectively 89.51% and
86.94% of accuracy), labeled in the following as good subjects;

• the worse subject (62.28%);

• among the remaining people, all with a comparable accuracy between 75-
85%, a random selection of other six persons labeled as medium subjects
(four of them are in the range 75-80% and the other two in 80-85%).

The graph in Fig. 17 shows how the classification accuracy changes as the
number of components used by the wavelet correction increases. For the medium
and good subjects, the scores remain more or less stable, with a slight improve-
ment trend in some of them (e.g. subject 02 and 07). Instead the classification of
the worse subject has received noticeable benefits from the Wavelet-Amuse pre-
processing: from the initial value of 62.28%, the accuracy increases and reaches
68.35% with 15 components.

3.3 Notch filter as robust linear regression
Although modern biomedical amplifiers have a very high common mode rejec-
tion ratio, recordings are often contaminated by residual power-line interfer-
ence. This is due to differences in the electrode impedances and to bias currents
through the patient front-end. Thus, the common mode voltage is transformed
into a pseudo differential signal that cannot be suppressed even by an infinitely
high CMRR [21].

If the power-line waveform is not a pure sinusoid due to distortions or clip-
ping, harmonics of the fundamental frequency could also appear [28]. When
the power-line interference is very intense2, the harmonics higher than half of

2 The power-line interference can be higher than 1V, while the EEG potential is in the
order of µV.
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Fig. 18: In black (thin line), the spectrum of a signal where a sinusoidal com-
ponent at 150 Hz has been added artificially to an EEG chunk (500 ms
long) sampled at 256 Hz. The EEG chunk has a dominant frequency
around 10 Hz, plus a power-line interference at 50 and 100 Hz; the ar-
tificial component at 150 Hz produces also an aliased component of the
spectrum around 106 Hz. In red (bold line), the spectrum of the signal
after the removal of the power-line interference by the method pro-
posed in the following Sections: the “prohibited” component at 150 Hz
is properly removed together with the aliased term at 106 Hz.

the sampling rate could not be adequately reduced by the analog antialiasing
low-pass filter of the device; hence the power-line signal will be distorted and
aliased by these harmonics (see Fig. 18 for an explanatory example).

Moreover, in presence of signal discontinuities (e.g. sudden spikes due to
other artifacts), the standard digital notch filters have a ringing effect3 that
modify the signal waveform.

In any case, removing effectively the power-line interference is a good practise
when using spatial filters: as already shown in Section. 3.2.1 about CAR filter
(Fig. 12), even the power-line interference (not completely removed) of few
channels may significantly waste the effect of spatial filters; this fact can be
extended to the other spatial filters that perform some weighted average of the
channels (e.g. Laplacian or Common Spatial Pattern filters).

Hence for all these reasons, in order for the MAMEM system work in un-
controlled environments, a different approach to the classic notch filtering has
been developed to remove the power-line interference. This robust method have
been added to the EEG filtering library already proposed in D2.1 [5]; for the
implementation details see appendix A.

The proposed method is described as follows. First, Section 3.3.1 shows how
to convert the estimation of the power-line interference into a linear regression
problem. Then, in Section 3.3.2 a robust method based on M-estimators is
introduced to estimate the power-line signal when a biological signal and (even-
tually) other artifacts/noise are superimposed to it. Finally, Sections 3.3.3 and
3.3.4 provide experimental evaluations of the proposed method.

3 I.e. the artificial oscillations that occurs in sharp transitions or discontinuities of the data
when a narrow-band filtering is performed.
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3.3.1 Linear regression

Distorted power-line interference m(t) due to the electrical mains is modeled by
several harmonics4 of 50 Hz (or 60 Hz, depending on the country):

m(t) =

K∑
κ=1

ακ sin(2πfκt+ ϕκ) (2)

In general, the signal to be analyzed will be of the form

y(t) = b(t) + n(t) +m(t) (3)

where b(t) is the biological signal (i.e. EEG), n(t) represents additional artifacts
and/or random noise, and m(t) is the power-line signal modeled by Eq. 2. Once
estimated m(t), given a sampled signal yi = y(ti), i = 1 . . . N , the power-line
interference can be filtered out by the subtraction y(t)−m(t): the remaining
signal contains only the biological signal b(t) and the additional noise n(t).

The estimation of a sum of K sine waves can be regarded as a linear regres-
sion problem. In fact, given the samples yi and being ωκ = 2πfκ, Eq. 2 can be
written as (let us ignore for the moment b(t) and n(t) in Eq. 3, since they are
regarded as noise for the estimation of m(t)):

yi =

K∑
κ=1

ακ sin(ωκti + ϕκ)

=

K∑
κ=1

ακ cosϕκ︸ ︷︷ ︸
vκ

sin(ωκti)︸ ︷︷ ︸
ai,k

+ακ sinϕκ︸ ︷︷ ︸
vK+κ

cos(ωκti)︸ ︷︷ ︸
ai,K+κ

=

2K∑
κ=1

ai,κvκ

(4)

To be a bit more general in the computation, also a constant offset v0 is
introduced into the signal modeling the power-line interference:

yi = v0 +

2K∑
κ=1

ai,κvκ (5)

For each sample yi, Eq. 5 contributes to the following system:
1 a1,1 . . . a1,2K
1 a2,1 . . . a2,2K
...

...
. . .

...
1 aN,1 . . . aN,2K


︸ ︷︷ ︸

A


v0
v1
...

v2K


︸ ︷︷ ︸

v

=


y1
y2
...
yN


︸ ︷︷ ︸

y

(6)

With N = 2K + 1, the system Av = y of Eq. 6 can be solved exactly;
when N > 2K + 1, a least square solution can be obtained e.g. through normal
equations5 by exploiting A+, the pseudo-inverse of A:

v = A+y = (A>A)−1A>y (7)
4 E.g. fκ= 50, 100, 150, . . . Hz.
5 Other methods can be used to compute the least square solution; as an example, SVD

decomposition is one of them.
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Finally, the substitution of the values for v1, . . . , vK in Eq. 4 is sufficient to
estimate the power-line interference at each sample yi; in any case, it is also
possible to recover the amplitude and phase of each sinusoidal wave by the
following formulas:

ϕκ = arctan

(
vK+κ

vκ

)
(8)

ακ =
vκ

cosϕκ
(9)

The offset v0 is not strictly required to remove the power-line interference.

3.3.2 Robust linear regression

Since yi may contain also the contribution of the biological signal bi = b(ti)
and some other noise ni = n(ti) (see Eq. 3), the standard least square approach
is not suitable to recover the value of the power-line interference mi = m(ti).
Least squares are optimal in the case of Gaussian error summed to the model
to be estimated, and this is not the case (even under the assumption that n(t)
is a Gaussian noise, b(t) in general is not Gaussian).

The effect of b(t) and n(t) in this context can be regarded as the production,
in the data collection {yi}Ni=1, of outliers6 w.r.t. the power-line model.In the
literature there have been developed a lot of robust algorithms to cope with
outliers [16]: in this work, a robust technique based on M-estimators have been
evaluated in recovering the true value for m(t) in presence of outliers.

The standard least-squares regression method tries to minimize
∑
i r

2
i , being

ri the residual of the fitted model w.r.t. the corresponding datum yi (let a>i
denotes the i-th row of matrix A in Eq. 6):

ri = yi − a>i v (10)

M-estimators form a class of robust (maximum-likelyhood) estimators that try
to reduce the effect of outliers by replacing the squared residuals r2i by another
function ρ(·) of the residuals ri, yielding

min
∑
i

ρ(ri) (11)

The loss function ρ(r) is required to be a symmetric, positive-definite function
with a unique minimum at zero, and must be less increasing than the square
function [30].

Three M-estimators have been considered in this work, chosen among the
widely used (see e.g. [15][22][30] for a review), and each of them is characterized
by its loss function:

L1-L2
ρL(r) = 2(

√
1 + r2/2− 1) (12)

Huber (η = 1.345)

ρH(r) =

{
r2/2 if |r| ≤ η
η (|r| − η/2) if |r| > η

(13)

6 Outliers are samples that are far from the data model distribution, and they can corrupt
in a hugely arbitrary way the least squares estimation.
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Tukey (τ = 4.6851)

ρT (r) =

{
τ/6 (1− (1− (r/τ)2)3) if |r| ≤ τ
τ/6 if |r| > τ

(14)

All these M-estimators for small residuals approximate the function r2/2.
For big residuals, both L1-L2 and Huber have a loss function that increases
linearly (an oblique limit in case of L1-L2) while Tukey loss function becomes
constant. Fig. 19 shows the plot of the loss function of the three M-estimators,
together with their weight function w(r), defined as:

w(r) =
d

dr
ρ(r) (15)

Please note in Fig. 19(c) that large outliers are not considered by Tukey es-
timator, since their weights are all zeros. Analytically, the weight functions of
the three M-estimators are:

L1-L2
wL(r) =

1√
1 + r2/2

(16)

Huber

wH(r) =

{
1 if |r| ≤ η
η/|r| if |r| > η

(17)

Tukey

wT (r) =

{
(1− (r/τ)2)2 if |r| ≤ τ
0 if |r| > τ

(18)

The weight function is exploited in the Iteratively Reweighted Least Squares
(IRLS) algorithm, a technique to obtain the solution for Eq. 11; for details about
the origin of w(r) see [15][30]. The IRLS algorithm is summarized in Alg. 1; by
setting W = diag(w1, . . . , wN ), the value for v corresponding to min

∑
i wir

2
i can

be computed as
v = (A>WA)−1A>Wy (19)

Algorithm 1: Iteratively Reweighted Least Squares procedure
Input: sample data {yi}Ni=1

Output: power-line model mi

1 Obtain an initial solution v(0) (e.g. by Least Squares) producing
residuals r(0)i

2 At step n, computes the weights wi = w(r
(n−1)
i )

3 Solve for min
∑
i wir

2
i (according to Eq. 19) and goto 2 until convergence

So far, for sake of simplicity, the scale of the residuals has been neglected.
However, in order to achieve scale invariance of the estimators, the Median of
Absolute Deviation (MAD) [16][22]

σ =
median(|ri −median(ri)|)

0.6745
≈ 1.48 median(|ri −median(ri)|) (20)
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Fig. 19: Loss function ρ(r) (on the left) and weight function w(r) (on the right)
for the three M-estimators. The function r2/2 is also plotted with a
thin black line in the left drawing of Figs. 19(a), 19(b) and 19(c).
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Fig. 20: Example of distorted power-line interference m(t) superimposed to an
EEG potential b(t) (top row). The artifact may be present in all chan-
nels or in isolated channels that include electrodes that have poorly
matched impedances. The middle row and bottom row show separately
the power-line signal m(t) and the EEG potential b(t).

should be incorporated during the computation of the weights by normalizing
the residuals by σ:

wi = w(ri/σ) (21)

A case study To graphically explain how M-estimators work, let us use the
synthetic example of Fig. 20 (top row), obtained as the superposition of ground
truth signals for the distorted power-line interference m(t) and the EEG poten-
tial b(t); the two signals m(t) and b(t) are shown separately in the other two
rows of the same figure (see Section. 3.3.3 for the details about m(t) and b(t)).

Fig. 21 shows the behaviour of L1-L2 estimator, both in terms of power-line
model estimation and final weight computation. The power-line interference
has been perfectly recovered thanks to the weights that are reduced when the
corresponding sample yi is an outlier for the model (e.g. the samples between
100 and 200 ms). Finally, also in presence of Gaussian noise, as shown in Fig. 22,
the estimation of the power-line interference is correctly computed.7

3.3.3 A Montecarlo experiment

To evaluate the effectiveness and robustness of the robust linear regression, a
Montecarlo experiment has been carried out by summing a known synthetic
power-line interference m(t) to a real EEG potential b(t) and an increasing
Gaussian noise n(t) (see Eq. 3). The experiment compares the behaviour of the
three M-estimators (L1-L2, Huber and Tukey) exposed in Section 3.3.2.

7 Huber and Tukey estimators have similar performance both for the case of Fig. 21 and
Fig. 22: being the main visible difference only in the weights (they are less smooth than L1-L2,
due to the hard thresholds η and τ in their weight functions of Eq. 17 and Eq. 18), the results
of the two estimators have not been plotted.
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Fig. 21: The result obtained by L1-L2 estimator when applied to the synthetic
example of Fig. 20.
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Fig. 22: The result obtained by L1-L2 in presence of additional Gaussian noise
applied to the synthetic example of Fig. 20.
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Tab. 3: Coefficients for the synthetic power-line interference, obtained from a
real acquisition with moderate interference.

κ Frequency fκ [Hz] Amplitude ακ [µV] Phase ϕκ [rad]

1 50 4.37 -0.49

2 100 2.23 2.06

3 150 2.54 0.59

4 200 0.82 -1.74

5 250 1.46 2.27

The signal m(t) was measured during an internal trial session as power-line
interference in an environment close to several electronics/electrical devices; its
purpose here is to provide a ground truth signal for the following experiments.
The EEG potential b(t) was still obtained in an internal trial session, and here
it has the main the purpose of adding to m(t) a vertical offset varying in time
as a disturb in the estimation of the actual m(t).

In order to test the estimation of several harmonics (compliant to the Shan-
non Sampling Theorem), the Montecarlo experiment is here performed at a
frequency of 512 Hz, thus allowing in Eq. 2 fκ = 50, 100, 150, 200, 250 Hz.
Although the trials in MAMEM are collected at 256 Hz, we just moved to the
next value among the sampling rates usually exploited in EEG recordings, thus
being not so far from the MAMEM standard8 (with a sampling rate at 256 Hz,
we would have only two harmonics < 128 Hz to be evaluated). The remaining
coefficents of the sinusoidal functions for m(t) in Eq. 2 are listed in Tab. 3.

Moreover, by multiplying the original power-line interference m(t) by differ-
ent amplitude scaling factors A, three scenarios have been generated:

• strong interference, with scaling factor A = 5

• medium interference, with scaling factor A = 1

• low interference, with scaling factor A = 0.5

Finally, for each scenario an increasing Gaussian noise n(t) is added with stan-
dard deviation σG = 0 (no noise), 0.1, 0.5, 1.0, 1.5, 2.0, 2.5; for a given level of
noise σG, 50000 random instances of noise n(t) are added to the original signal
b(t) +Am(t).

The output results have been averaged and compared in Tab. 4 (strong
interference), Tab. 5 (medium interference) and Tab. 6 (low interference).9 The
tables report the number of iterations required by each M-estimator to converge,
and the distribution (summarized by the average value and standard deviation)
of the estimated coefficients for the power-line interference Am(t).

As expected from Tabs. 4–6, as the interference decreases (from strong to
low) the estimation performance for Am(t) gets worse, becoming predominant

8 Furthermore, the new lightweight headset ENOBIO 8 has a sampling rate of 500 Hz.
9 In Tab. 6 some entries are not available (n.a.) because the corresponding output files

(each containing 50000 trials) were unreadable due to a formatting issue, and averaging the
results was not possible. Since they are not expected to provide relevant information, and
given the long computational time required by the Montecarlo experiment, we avoid to run
again the related estimations.
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the signals b(t) and n(t). More in general we can summarize the following
conclusions:

• All the estimators have a (usually small) bias, even in absence of noise,
probably due to the low sampling rate

• The components of the highest frequencies (200, 250 Hz) are not well
fitted, probably because they are more contaminated by the Gaussian
noise that is mainly located in the high frequency band.

• L1-L2 and Huber has comparable performance in terms of accuracy and
average iterations

• The iteration distribution for Huber is wider than L1-L2 one

• Tukey requires the highest number of iterations to converge and is less
precise as noise increases

From all this considerations, L1-L2 is found to be the best among the 3 estima-
tors to compute the power-line interference.

3.3.4 Real data

The method proposed so far requires that the fundamental frequency of the
power-line interference is known. In real situations, the actual frequency can be
different from the nominal one (e.g. 50 or 60 Hz), and an estimate of it can be
necessary to obtain a reliable performance of interference removal. To this aim
a frequency estimator can be exploited, such as the lattice-based algorithm of
[4] since it features instantaneous estimation of the frequency, desirable perfor-
mance and low complexity. The frequency estimator can update continuously
sample by sample the value of the fundamental frequency and provide that value
to the robust linear regression algorithm of Section 3.3.2.

To see the effect of a wrong estimation of the frequency compared to using a
correct value, consider the example given by a data chunk of 1 second taken from
channel C3 of Fig. 10. Although in this case the EEG content is expected to be
neglectable or null, an effective removal of the power-line interference is a good
practise even for not so reliable channels like C3 in Fig. 10. When the robust
notch algorithm (with L1-L2) uses the nominal value of 50 Hz, it is clearly visible
that the interference is not properly removed at the two sides of the chunk where
a residual waveform is still visible (Fig. 23); if instead the value of 50.027 Hz
found by the lattice algorithm is used, the interference removal is good (Figs. 24
and 25). Even if the difference between the nominal and estimated values of the
frequency is so small, there is a noticeable residual in the bin of the spectrum
corresponding to 50 Hz for the former case (Fig. 23) that disappears almost
completely in the latter (Figs. 24 and 25).

As final example, the frequency estimator was applied to a slice of 1 second
taken from MDA cohort (patient no.5, SMR experiment with the heavyweight
configuration at 256 Hz); the estimated value of the frequency (49.97 Hz) was
used by the robust notch algorithm (with L1-L2). The result is plotted in
Fig. 26: looking at the filtered spectrum (red line in the bottom picture), the bin
components at 50 and 100 Hz become close to 0 as proof of the good performance
of the filter.
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Fig. 23: The result obtained by L1-L2 estimator with the nominal value of 50
Hz for the fundamental power-line frequency; it is evident that, at the
sides of the of the signal chunk, the interference is not removed. Top
row: the signal y(t) in black and the cleaned signal y(t)−m(t) in red.
Bottom row: corresponding Fourier spectrum for y(t) and y(t)−m(t).

Fig. 24: The result obtained by L1-L2 estimator with the estimated value of
50.027 Hz for the fundamental power-line frequency; in this case the
interference is properly removed. Top row: the signal y(t) in black
and the cleaned signal y(t) −m(t) in red. Bottom row: corresponding
Fourier spectrum for y(t) and y(t)−m(t).
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Fig. 25: A zoom in amplitude of Fig. 24.

Fig. 26: The result obtained by L1-L2 estimator after computation of the fun-
damental power-line frequency by the lattice algorithm. Top row: the
signal y(t) in black and the cleaned signal y(t) −m(t) in red. Bottom
row: corresponding Fourier spectrum for y(t) and y(t)−m(t).
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3.4 Final EEG filtering considerations for best practises
All the experiments carried out so far about EEG data preprocessing have high-
lighted the following conclusions:

• Wavelet-Amuse copes successfully with ocular artifacts, but not with most
of other kind of noise;

• to avoid any risk to remove also the EEG signal, the suggestion is to fix
only the first components (max 10 but less is better, e.g. 7)

• CAR filter should not be used if some channels are very noisy

• for Wavelet-Amuse, slices with length of 1-5 seconds are preferable (due
to computational costs and effectiveness);

• for ErrPs detection, the use of Wavelet-Amuse does not worth, since in
most of the cases it just slightly improves the accuracy of the detector;

• for artifacts different from the ocular ones, use ordinary high-pass and/or
low-pass filters to remove the frequencies outside the band of interest;

• the robust notch algorithm presented here can remove the intense power-
line interference better than standard notch, but it should be applied only
to the (possibly few) channels of interest since it has a not so neglectable
computational cost, and with data slices of about 1-2 seconds.

Successes and limits of Wavelet-Amuse This section is closed with an expla-
nation why Wavelet-Amuse can remove the ocular artifacts but fails with other
kind of noise. To this aim, Fig. 27 shows the first 14 components of a data
chunk that contains both ocular and muscular artifacts at high frequencies (see
Fig. 28). Usually the first components contain the ocular artifacts, and in this
case they are clearly visible in the component no. 5 (but also in no. 2–4), while
it is not clear where the high frequency noise goes. Hence the detection/correc-
tion of the ocular noise is easier than fixing the other kind of noise. To confirm
this, Fig. 29 shows that the signals modified by the Wavelet-Amuse are without
the ocular artifacts, but still contain the muscular ones.

Fig. 27: First 14 independent components of an EEG data chunk with ocular
and muscular artifacts (shown in Fig. 28). The red rectangle highlights
the components where the ocular artifacts are mapped by Amuse; it is
not clear which components are related with the muscular artifacts.
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Fig. 28: An example of both ocular artifacts, pointed out by the red rectan-
gle, and muscular artifacts, shown inside the two blue rectangles (from
healty subject no. 2 of SHEBA cohort, SMR experiment with the
heavyweight configuration).

Fig. 29: By fixing the first seven independent components, Wavelet-Amuse re-
moves successfully the ocular artifacts (compare the channels inside
the red rectangle in Fig. 28), while the muscular noise remains (blue
rectangles).
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4 EEG electrode monitoring

Aside trivial techniques such as signal thresholding, the aim of this section is
to investigate an interesting and adaptable strategy to decide if an EEG data
chunk is good or not for subsequent processing. Moreover, if the “bad data”
condition is continuously active, it is likely that the channel has some problems
to be fixed. Hence the method could substitute in a first run the role of the
Ohmmeter check, i.e. the procedure to evaluate if the corresponding electrode
to the channel is properly collecting the EEG signal.

The task of evaluating the quality of an EEG stream have been very chal-
lenging. To our knowledge, after a survey of the literature, only a recent paper
focuses explicitly on this problem: [24], where six scores indicating the quality
of the signal are proposed. The first score is calculated based on the general
amplitude of the EEG channels. The second score is calculated based on which
channel has the highest amplitude. The third score is based on calculating the
dominant frequency for the channels. The last three scores depend on the am-
plitude and the geometrical shape of the main frequency bands (Delta, Theta,
Alpha and Beta) of each channel. The paper shows that those scores are in-
versely related to the signal to noise ratio, but it does not provide any clear
indication about the classification of abnormal behaviour of a channel.

Differently from [24], the strategy adopted here is based on a supervised
classification approach. Furthermore, in order to be independent from the sam-
pling rate, it was avoided to use descriptors made by segments of raw samples
preferring descriptors belonging to the spectral domain.

4.1 A LDA approach

A preliminary study was based on the rational assumption that usually a “bro-
ken” channel collects a lot of power-line interference. Under this assumption,
the power of the signal at 50 Hz Pp was compared to the average spectral power
Ps without the contribution at 50 Hz.

Hence, a simple criterion could have been to put a threshold onto the ratio
of Pp and Ps, ρ = Pp/Ps, but it had a quite poor performance.

For this reason, we moved to a more flexible methodology: after applying
Fisher Linear Discriminant Analysis (LDA) [12] to a preparatory dataset con-
taining labeled EEG chunks of good and bad examples (see Fig. 30), a linear
criterion was found to decide if the content of the channel was good or not.
LDA was performed on a logarithmic scale of the original values: pp = log10 Pp
and ps = log10 Ps, in order to get compact clusters.

Given a set of labeled 2D points pn = [ps,n pp,n]>, belonging to the set
Dg (good chunks) or Db (bad chunks), the aim of LDA was to find a vector
w = [w1 w2]> such that the corresponding yn = w>pn ∈ R are divided into two
sets Yg and Yb that are maximally separable (Fig. 31). After that, the optimal
decision threshold wt between Yg and Yb was found at the intersection of the
one-dimensional distributions of the two projected sets (see again Fig. 31).

4.1.1 Interpretation of the LDA criterion

An interpretation of the LDA criterion for this classification task is the following.
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Let’s start with the equation of the optimal decision boundary:

w>p− wt = 0

By expanding it we get,

w1ps + w2pp − wt = 0⇒ pp = −w1

w2
ps +

wt
w2

(22)

that is the equation of the blue dotted line in Fig. 31, perpendicular to the
direction of w.

Now consider again the ratio ρ of Pp and Ps and take the logarithm of it:

log10 ρ︸ ︷︷ ︸
τ

= log10

Pp
Ps

= log10 Pp − log10Ps = pp − ps ⇒ pp = ps+ τ (23)

that represents a line with slope equal to 1 and offset τ . Thus, the simple
criterion of fixing a threshold on the ratio of Pp and Ps is equivalent to move
that line along the pp axis.

By comparing Eq. 22 with Eq. 23, we can see that the LDA criterion adds
one more degree of freedom to the rule based on the simple ratio, i.e. the slope
of the line is not constrained anymore to be 1.

4.2 A more general solution
Although the method based on LDA was able to detect the bad EEG chunks due
to power-line interference, the visual analysis of the exams contained in Phase
I dataset showed that the power-line interference cannot be the only indicator
of bad EEG data.

As a consequence, the analysis was expanded to the band 1-64 Hz (the whole
available spectrum for a 128 Hz acquisition, the lowest sampling rate among the
commonly used ones) and the Phase I dataset was used as source of bad and
good examples. The more general assumption is that a "bad electrode" has
a completely different spectrum compared to the spectrum of a good channel;
furthermore, the generalization can cover both the case of 50 Hz and 60Hz for
the power-line interference.

Due to the intensive use, at a certain point the heavyweight headcap used
in the MDA and AUTH cohorts got a damage in C3 electrode (and sometimes
other channels were not properly collecting the EEG signals). Thus, by manually
labelling several (good and bad) channels from those acquisitions, both training
and validation sets were created for a supervised classification approach. The
same subject does not appear in both the datasets. Among the bad examples
were inserted chunks containing strong power-line interference (Fig. 10), and
highly disturbed data by external sources (e.g. Fig. 7) or intense muscular
artifacts (Fig. 13); chunks with simple ocular artifacts (like in Fig. 4) instead
were considered among the good examples, since it has been already shown that
they can be handled by Wavelet-Amuse.

The training set contains 7563 examples while the validation set is made
by 2456 examples; and each example contains 1 second of data coming from
one of the selected channels. For each data chunk a descriptor with 63 compo-
nents coming from FFT has been computed (the dc component was removed by
subtracting the average value of the chunk).
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Among the several supervised approaches, Support Vector Machines (SVMs)
have been selected for they easiness of parameterization and use: a good perfor-
mance both for the training set (96.30% of correct classifications) and validation
set (96.45%) was found.

4.2.1 SVM parametrization and training

Among the several kernels proposed for the SVM model, in this work was se-
lected the Radial Basis Function (RBF) Kernel, very popular in literature [1]:

K(xi,xj) = e−γ‖xi−xj‖
2

where the width parameter γ > 0 controls the width of the Gaussian kernel.
The other parameter of the SVM to be tuned is a cost parameter c > 0 that
imposes a penalty on misclassified samples (i.e. a regularizer).

Thus, the parameter space of the RBF-SVM is made only by the couple
(γ, c); with such a small dimension of the parameter space, a grid-search ap-
proach is the standard method to train the SVM. As suggested in [18], the use
of exponentially growing sequences of c and γ is a practical method to iden-
tify good parameters; since from a preliminary random search we found that
the accuracy in the training set improved as γ and c increased, here the tested
parameters have been γ = 2i, i = 0, . . . , 16 and c = 2j , j = −1, . . . , 8.

Fig. 32 shows in graphical way the classification accuracy on the training set
of the SVM in function of several values for (γ, c). Fig. 33 plots the classification
accuracy of the trained SVM when applied to the validation set. As expected,
when the SVM has an accuracy very close or equal to 100%, a overfitting oc-
curs since the corresponding accuracy on the validation set becomes quite low
(around 68%). The best compromise, minimizing the difference between the ac-
curacy of the two sets, is achieved for γ = 8 and c = 0.5: as already written, the
accuracy on the training set is 96.30%, while for the validation set it is 96.45%.

Tab. 7 shows the confusion matrix of the best SVM, both for the training
and validation sets; in both cases, the errors are mostly due to false positives
(246/7563=3.25% for the training set and 83/2456=3.38% for the validation
set), but the error rate could be reduced by requiring that the “bad channel”
condition should hold for N > 1 continuous times. The last two columns of the
table shows that the classification score does not change significantly when the
trained SVM at 256 Hz is called to evaluate the validation set sub-sampled at
128 Hz (95.32% vs. the the previous value of 96.45%), as a confirmation that
the proposed strategy can cope with different sampling rates.

Tab. 7: Confusion matrix of the best SVM, for the training and validation sets
at 256 Hz, and for the validation set at 128 Hz classified by the SVM
trained at 256 Hz.

Train. set (256 Hz) Valid. set (256 Hz) Valid. set (128 Hz)

good bad good bad good bad

good 3392 246 924 83 892 115

bad 34 3891 4 1445 0 1449

After that, the trained SVM was run with some channels coming from other
acquisitions of the SHEBA cohort; those acquisitions were never seen by the
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Fig. 32: Classification accuracy for the training set in function of various values
for c and γ; ticks are labeled as log2(γ) (x axis) and log2(c) (y axis).
Classification accuracy ranges from 81.145% to 100%. (best viewed in
color)
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Fig. 33: Classification accuracy for the validation set in function of various val-
ues for c and γ; ticks are labeled as log2(γ) (x axis) and log2(c) (y axis).
Classification accuracy ranges from 68.111% to 96.539%. (best viewed
in color)
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Fig. 34: Results for the classification of the channel quality of an exam from
the Sheba cohort (patient no. 2, SMR experiment with heavyweight
configuration), never used for training neither validation. Blue sections
are labeled as bad data.

SVM, and the results were quite good as well. By visual inspection, there were
of course some false positive/false negative but in general the classifier rose up
the "bad data" label (blue sections in Fig. 34 as example) in points where the
signal was not good.

All these experiments have shown that the SVM approach has good perfor-
mance, that probably could be also improved by adding more examples to the
dataset. A library realizing the described approach has been developed with a
C interface; for the implementation details see appendix. B.
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5 Final tuning about GSR data acquisition and best
practices

An investigation of the data gathered during the Phase I trials was performed
to assess the quality of the signals.

Initially, we investigated the signals visually. Based on this investigation, we
observed that the signals exhibited unrealistic high-low peaks of conductivity
levels which can be attributed to the loss of contact of the GSR sensors or by
physical movements of the participants. This is evident if we consider that the
typical skin resistance levels lie between 47kΩ and 1MΩ [2] and that in some
cases the readings showed extreme levels of resistance which is the expected
result of contact loss. Moreover, high frequency noise may be considered as
evidence of motion artifacts that in most cases can be observed during the SMR
phase of the experiment and for healthy subjects during which the participants
were required to perform physical movement (fist clenching).

To remove these artifacts from the signals we applied the following arti-
fact removal algorithm. To make our calculations easier we downsampled the
recorded signals from 256Hz to 32Hz, which based on the literature [17] is more
than enough for maintaining all the useful information of the GSR signal. Then
we considered resistance measurements below 10kΩ as a recording error of the
device (based on the device specifications as mentioned on the user manual [29])
and measurements above 1MΩ as the loss of contact of one or both sensors. Ev-
ery value that was measured outside the range of 10kΩ–1MΩ was replaced with
the mean of the previous 10 samples. An example of such contact-loss artifacts
can be seen in Fig. 35.

Fig. 35: Example of contact loss occurrences shown with the red line, and cor-
rected signal (blue line). Note that the scale of y-axis is very high and
so details of the GSR signal are not visible.

Moreover, in order to remove high frequency noise resulting from motion
artefacts or other unknown sources, we applied a low-pass FIR filter with a
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Fig. 36: Removing high frequency noise. Red line is the original signal and blue
line the signal after low-pass filtering.

cut-off frequency of 5Hz using zero-phase filtering [23] so as to not introduce
delays in our signals or distort the signals. An example of a signal with motion
artifacts and after the proposed filtering approach can be seen in Fig. 36.
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A Implementation of the robust notch filter

The EEG filter library has been enriched with the new functions for the robust
notch filter algorithm of Section 3.3 (Math.NET Numerics [27] is used for inter-
nal matrix computations), together with the lattice-based frequency estimator10
used in Section 3.3.4.

First of all, the settings for the robust notch filter and lattice-based fre-
quency estimator are given by the structures ROBUST_NOTCH_FILTER_SETTINGS
and FREQUENCY_ESTIMATOR_SETTINGS in List. 1. While the settings for the ro-
bust notch filter are self-explanatory, a description is required for some of the
parameters of lattice-based frequency estimator: in particular B0, Binf and Bst
manage the bandwidth of the frequency estimator, while P0, Pinf and Pst rule
the settling time of the frequency estimation; usual values for such parameters
are reported in Tab. 8 [20].

Parameter B0 controls the initial notch bandwidth. Larger values of B0 are
preferred (e.g. tens of Hz) to achieve a faster initial convergence. Similarly,
Binf controls the asymptotic notch bandwidth. Small values of Binf are pre-
ferred (e.g. tenths of Hz) to achieve more accurate estimation of the frequency.
Bst controls the rate of transition between initial notch bandwidth B0 and the
asymptotic notch bandwidth Binf (i.e. the rate of convergence to 95% of the
asymptotic bandwidth Binf).

Parameter P0 controls the initial settling time of the frequency estimation
algorithm; smaller values of P0 are preferred (e.g. tenths of seconds) to achieve a
faster initial convergence. Similarly, Pinf controls the asymptotic settling time
of the frequency estimation algorithm. Considering the fact that the power-line
frequency drifts are slow, larger values of Pinf are preferred (e.g. a few seconds)
to obtain a more accurate estimation of the power-line frequency. Pst controls
how fast the settling time changes from the initial value of P0 to its final value of
Pinf (i.e. the rate of convergence to 95% of the asymptotic settling time Pinf);
this transition time should be set large enough, e.g. a few seconds depending
on the notch bandwidth, to allow global convergence.

Listing 1: Settings for the robust notch algorithm and lattice-based frequency
estimator

// settings for the robust notch filter
typedef struct
{

// Fundamental frequency of powerline interference (50 or 60 Hz)
double frequency;

// number of frequencies to be removed (fundamental plus the other
harmonics)

// e.g. if frequency=50 and nFrequencies=2, the frequencies to be
// removed are 50 and 100
int nFrequencies;

// sampling rate in Hz (e.g. 128)
double samplingRate;

10 The implementation found in [19] was used as main sketch to write our code for the
lattice-based frequency estimator.
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// number of samples of the chunk data that will be cleaned
int sliceLength;

// If not equal to 0, the algorithm is enabled to estimate
// also the DC component of the chunk data that will be cleaned
int estimatedDC;

} ROBUST_NOTCH_FILTER_SETTINGS;

typedef struct
{

// fundamental frequency of the powwer-line signal
double frequency_Hz;

// sampling rate
int fs;

// Initial bandwidth of the frequency estimator
double B0;

// Asymptotic bandwidth of the frequency estimator
double Binf;

// Rate of convergence to 95\% of the asymptotic bandwidth Binf
double Bst;

// Initial settling time of the frequency estimator
double P0;

// Asymptotic settling time of the frequency estimator
double Pinf;

// Rate of convergence to 95\% of the asymptotic settling time
double Pst;

} FREQUENCY_ESTIMATOR_SETTINGS;

Tab. 8: Recommended coefficients for the lattice-based frequency estimator.
Parameter Unit range

B0 Hz 10.00 – 50.00
Binf Hz 0.01 – 0.10
Bst s 0.50 – 10.00

P0 s 0.01 – 0.50
Pinf s 1.00 – 5.00
Pst s 1.00 – 10.00

Finally, in List. 2 the functions to create and use the robust notch filter and
the frequency estimator are shown. Please note that, although the lattice-based
frequency estimator is not a filter, for sake of convenience it is regarded as a
PFILTER reference as well.
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Listing 2: Functions to use the robust notch algorithm and the lattice-based
frequency estimator

// function that creates the object implementing the
// lattice-based powerline frequency estimator
MAMEM_FILTER_API PFILTER CreateFrequencyEstimator(const float frequency);

// function that instantiates a robust notch object, to be used as
// a PFILTER reference, given the info in the input parameter
// of type ROBUST_NOTCH_FILTER_SETTINGS
MAMEM_FILTER_API PFILTER FilterCreateRobustNotch(const

ROBUST_NOTCH_FILTER_SETTINGS* settings);

// function that removes the powerline interference
// input PFILTER: the reference to the robust notch filter previously
// created with FilterCreateRobustNotch(const

ROBUST_NOTCH_FILTER_SETTINGS*)
// double freq: the estimated fundamental frequency of the powerline

interference
// float* data: float array with the channel chunk of data to be cleaned
// int dataLength: length of float array data
MAMEM_FILTER_API errno_t RemovePowerLineByRobustNotch(PFILTER

robustNotch, double freq, float* data, int dataLength);

// function that reset the lattice-based powerline frequency estimator
represented by the reference PFILTER,

// previously created with CreateFrequencyEstimator(const float
frequency);

MAMEM_FILTER_API errno_t FilterResetFrequencyEstimator(PFILTER
frequencyEstimator);

// function that provides the value of the power-line frequency,
// countinuosly fed by data chunks in float* data
MAMEM_FILTER_API double FilterUpdateFrequencyEstimator(PFILTER

frequencyEstimator, float* data, int dataLength);
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B Implementation of the electrode monitor library

The EegMonitor library is a dll with a C interface: see List. 3 for a descriptions of
the C functions and their parameters. The code behind the C interface exploits
also the libSVM library [3], to include a class implementing the SVM functions,
and Math.NET Numerics [27] for the FFT computation (used to create the
descriptors for the SVM)

Listing 3: C interface for the EEG electrode monitoring functions

#ifdef MAMEM_EEG_MONITOR_API_EXPORT
#define MAMEM_EEG_MONITOR_API _declspec(dllexport)
#else
#define MAMEM_EEG_MONITOR_API _declspec(dllimport)
#endif

// ‘‘pointer’’ to underlying eeg monitor object
typedef void* PMONITOR;

extern "C"
{

// This function creates the eeg monitor object.
MAMEM_EEG_MONITOR_API PMONITOR EegMonitorCreate(double

exampleDuration_ms, double samplingRate_Hz, double
maxFrequencyInDescriptor_Hz);

// This function destroys the eeg monitor object.
MAMEM_EEG_MONITOR_API errno_t EegMonitorDispose(PMONITOR eegMonitor);

// This function allows to adapt a trained channel monitor
// to a sampling rate different from the one used in the
// training session
MAMEM_EEG_MONITOR_API errno_t UpdateSamplingRate(PMONITOR eegMonitor,

double samplingRate);

// The function returns in samplingRate the value of
// the sampling rate of the channel monitor instance
// given by PMONITOR
MAMEM_EEG_MONITOR_API errno_t GetSamplingRate(PMONITOR eegMonitor,

double* samplingRate);

// function to train a channel monitor instance (eegMonitor)
// given a training file in libSVM format
// c and gamma represents the tranining parameters of the
// RBF_SVM model adopted
MAMEM_EEG_MONITOR_API errno_t Train(PMONITOR eegMonitor, char*

datafile, double c, double gamma);

// this function saves to file the state of a trained
// channel monitor instance
MAMEM_EEG_MONITOR_API errno_t SaveTrainedMonitor(PMONITOR eegMonitor,

char* datafile);
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// The function Load a trained channel monitor from file
static public ChannelMonitor LoadTrainedMonitor(string filename)

// the function returns true in boolean entry isok if
// the data length of the array to be analyzed agrees
// with the lenght set for the PMONITOR instance of
// channel monitor
MAMEM_EEG_MONITOR_API errno_t CheckDataLength(PMONITOR eegMonitor,

int length, bool& isok);

// Function that analizes the float array of data and
// provides in boolean entry isgood the value true is the
// signal is good for EEG processing
MAMEM_EEG_MONITOR_API errno_t EvaluateGoodChannel(PMONITOR

eegMonitor, bool* isgood, float* data, size_t dataLength);

// Function that return a string containing the descriptor
// extracted for a EEG chunk of data. Useful to create new
// training files
MAMEM_EEG_MONITOR_API errno_t TextRawDescriptor(PMONITOR eegMonitor,

float* data, size_t dataLength, bool goodChannel, char* text,
int* charLength);

}
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