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Abstract—Brain-computer interfaces (BCls) have been gain-
ing momentum in making human-computer interaction more
natural, especially for people with neuro-muscular disabilities.
Among the existing solutions the systems relying on elec-
troencephalograms (EEG) occupy the most prominent place
due to their non-invasiveness. In this work, we provide a
review of various existing techniques for the identification of
motor imagery (MI) tasks. More specifically, we perform a
comparison between Common Spatial Patterns (CSP) related
features and features based on Power Spectral Density (PSD)
techniques. Furthermore, for the identification of MI tasks,
two well-known classifiers are used, the Linear Discriminant
Analysis (LDA) and the Support Vector Machines (SVM).
QOur results confirm that PSD features demonstrate the most
consistent robustness and effectiveness in extracting patterns
for accurately discriminating between left and right MI tasks.
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I. INTRODUCTION

Brain Computer Interface (BCI) term is referred to as an
artificial communication channel between human brain and
the external environment by using machines (mostly com-
puters) [1]. It is a channel out of the ordinary communication
channel of human brain, the nerves. By using this channel,
the human is able to send messages and commands to its
external environment. A BCI system measures brain activity
and translates it into control signals. These control signals
can be used to construct new augmentative technologies.
People with motor disabilities need augmentative technolo-
gies corresponding to natural ways of communications.
Those who are totally paralyzed, or locked-in, cannot use
conventional augmentative technologies, since some mea-
sure of muscle control is required. The immediate goal of
a BCI system is to provide these users with basic commu-
nication capabilities, so that they can express their wishes
to caregivers or even operate word processing programs
or neuroprostheses. It is obvious that a BCI system could
improve their quality of life, while at the same time reduce
the cost of intensive care. Besides medical applications, a

BCI system provides us with the opportunity to facilitate the
communication of human with machines/computers by con-
structing interfaces which are based on more natural ways
of communication beyond mouse and keyboards. The brain
responses can be measured by adopting various acquisition
modalities such as Functional Magnetic Resonance Imaging
(fMRI), functional Near-Infrared Spectroscopy (fNIRS) and
electroencephalography (EEG). From the above acquisition
modalities, the EEG signal is the most frequently used
because of its noninvasiveness, its high time resolution, ease
of acquisition, and cost effectiveness compared to other brain
activity monitoring modalities [2].

BCI systems can be divided into two main categories. In
the first category, belong systems where the user focuses
attention on a set of stimuli, which produce an autonomic
response that can be detected by the system, for example
Steady State Visual Evoked Potential (SSVEP) BCI systems.
In the second category, the user performs a mental task,
such as imagined movement or sub-vocal counting, to create
changes in brain signals that can be detected by a BCI,
for example Motor Imagery (MI) BCI. The MI mental
strategy detects brain activity patterns that are generated
during the imagination of movement. This technique is based
on the Sensorimotor Rhythms (SMR), brain waves that
appear on EEG recordings from areas of the brain that are
associated with planning, control, and execution of voluntary
movements [3].

The input of a BCI system is the electrophysiological
brain activity, while the output is a device command. The
brain activity is recorded through the use of an EEG system.
After that, the analysis of EEG signals is performed in order
to extract the intended commands of the user. The goal of
a BCI system is to translate brain activity into a command
for a computer. To achieve this goal machine learning al-
gorithms are used. More specifically, a BCI system depends
on whether the following two requirements can be satisfied:
(1) the extracted EEG features are able to differentiate the
task-oriented brain states; and (2) the methods for classifying
such features are efficient [4].

One major challenge of this field is thus to extract reliable



information from noisy data in real time in the form of rel-
evant features. These can then be passed on to classification
techniques for identifying the user’s mental state frequencies
(or parts) of EEG, depending on the application. With
respect to EEG-BCI systems, feature extraction approaches
are dominated by methods estimating the distribution of
energy in various domains, such as the time domain, the
frequency domain, the time - frequency (t-f) domain, the
wavelet domain and the spatial domain. In order to extract
time domain features, a digital filter is applied to EEG
segments. The goal of filtering is to select the EEG rhythms
components depending on the frequency band of interest and
then calculate the energy of the filtered EEG segments [5]
(band power features). Also in time domain, AutoRegressive
(AR) and Adaptive AutoRegressive (AAR) parameters [5],
[6] can be extracted and used as features by fitting in EEG
segments an AR model (AR features) in conjunction with
a Kalman Filter (AAR features). In [7] the EEG segments
are represented in the frequency domain by estimating the
Power Spectrum Density (PSD). The PSD provides us with
an energy distribution across the frequencies bins (PSD fea-
tures). In order to examine the time varying characteristics
inside the EEG segment we need to transform the signal in
the t-f domain or in the wavelet domain. Hence, t-f features
and wavelet - based features have been also used in MI BCI
[7], [8]. Finally, features that exploit the energy distribution
of EEG into the spatial domain are used in [5], [9]-[11]
(CSP features).

In MI BCI, the extracted features are fed into a classifier
to identify the user’s mental state. Many classifiers have
been used to predict the user’s mental state. A comparison
between non linear and linear classifiers is provided in [12].
According to the results, the nonlinear classifiers present
slightly better performance than the linear ones [12]. In
[7], various classifiers have been used for the identification
of motor tasks. More specifically, a comparison between
Linear Discriminant Analysis (LDA) and various extensions
of Support Vector Machines (SVM) is provided. The main
outcome of [7] is that the SVM with a gaussian kernel is
the most appropriate classifier for the examined problem. In
addition, at the same work a genetic algorithm had to be
used to fine-tune SVM. This fact increases considerably the
overall tuning of a MI BCI system. To avoid any interference
from the SVM training procedure in [13] the LDA classifier
was used.

A comparison of different feature extraction techniques
in the context of BCI was presented in [7], together with
their use in classification of motor imagery. Also, in [13]
a comparative study of different PSD feature extraction
approaches was presented. While both studies [7], [13]
use in some cases the same method for feature extraction,
there are differences between them which are concentrated
at how the EEG segment is processed. Furthermore in
[13] the log-transform was applied to the extracted PSD

features. Our work aims at complementing, and reproducing
independently, the observations made in those two studies. In
the next sections, we detail how we extract the features and
present the corresponding techniques we use to extract the
relevant information. Then, we present the data set under
study and the results of our experiments. Finally, some
conclusions and recommendations, based on our results, are
provided.

II. METHODS

The next subsections describe in details the feature ex-
traction techniques and the classifiers and how they are used
in the present study. For feature extraction, we considered
using the Welch’s method for spectrum estimation and the
CSP-related features, while, for the classification stage, we
used the LDA and SVM classifiers.

A. Feature Extraction Procedure

1) Welch Spectrum: A well-known non parametric
method for PSD estimation is the Welch’s method [14].
Let z[n],n = 0,--- ,N — 1 are the samples from an EEG
segment. To estimate the Welch’s spectrum of this segment
three basic steps are applied:

1) First, divide the original N length sequence into K
sections (possibly overlapped) of equal lengths M.

i=0,--,K—1
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2) Apply a window to each section and then calculate
the periodogram on the windowed sections (modified
periodograms).
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where U = Zf‘f;ol w[m]? is a normalization con-
stant with respect to the window function.

3) Average the modified periodograms from the K sec-
tions in order to obtain an estimator of the spectral
density.
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In our analysis, we use eight sections of equal length with
50% overlap for the first step and the Hamming window in
the second step.

B. Common Spatial Patterns

Spatial filtering is the process of filtering the signals by
using information from the spatial domain. More specifi-
cally, in the spatial filtering, “new” channels are created
as a combination of the original ones. In EEG analysis,
well-known spatial filters are the bipolar and Laplacian



which are local spatial filters. A bipolar filter is defined
as the difference between two neighboring channels, while
a Laplacian filter is defined as four times the value of a
central channel minus the values of the four neighboring
channels around. The above spatial filters are defined a
priori, i.e., the filter coefficients are known and fixed. There
are different ways to define spatial filters. In particular, the
filter coefficients (or weights) can be fixed in advance or they
can be data driven, i.e., the weights are obtained during a
learning procedure.

The CSP algorithm is an algorithm that provides us
with a set of spatial filters. These filters are obtained after
performing a learning procedure, during which the variance
of the spatially filtered signals is maximized for one class
(e.g., one mental imagery task) and minimized for the other
class. At the beginning the CSP algorithm was applied on
multichannel data from two classes/conditions [9]. However,
extensions of the algorithm to handle multi-class problems
have been proposed [15], [16].

The CSP algorithm performs a decomposition of the
signal though the matrix W, which contains the spatial
filters. More specifically, this algorithm transforms the EEG
signal from the original into a new domain which is occupied
by the "new” channels

x(CSP) — Wx, @

where x € RE*! is the EEG signal at time point t,
x(@SP) ¢ REXL s the decomposed “new” EEG signal
and W € RE*C is the matrix with the spatial filters
w;,t = 1,---,C, and C is the number of channels. The
spatial filters are obtained by maximizing (or extremizing)
the following function [10]:
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where T' denotes transpose, X; is the data matrix containing
the trials from ¢-th class, C; is the covariance matrix of ¢-th
class. The above maximization problem is equal to maximize
wT C,w subject to the constraints w’ Cow = 1. The last
problem is equivalent to the generalized eigenvalue problem
C,;w = A\Csw. So, the spatial filters w; are the generalized
eigenvectors of the above problem. It is worth to note here
that in most cases after the application of CSP algorithm for
spatial filtering an additional step is performed in order to
extract CSP-related features [10]. Once the spatial filters w;
are obtained, CSP feature extraction consists in filtering the
EEG signals using the w; and then computing the resulting
signals variance. As reported in [10] it is common to select
three pairs of CSP spatial filters, corresponding to the three
largest and smallest eigenvalues, hence resulting in a trial
being described by six CSP features. However, the above
heuristic choice of the number of spatial filters depends

heavily from the nature of the data (i.e., number of channels),
as well as from the data analysis perspective (i.e., using
filterbanks or not)

In motor BCI experiments special interest attracts the
brain activity in the motor cortex, which is reflected into the
electrical activity that is acquired from two channels, C3 and
C4. This information could be used in order to construct the
feature vectors. More specifically, this information could be
combined by concatenating the features from each channel.
For this reason the features that are extracted from each
channel, for both aforementioned methods, are concatenated
into one feature vector f.

C. MI Classification

1) SVM classifier: A popular classification algorithm is
the SVM [17], which aims to find the optimal hyper-plane
that separates the positive class from the negative class
by maximizing the margin between the two classes. This
hyperplane, in its basic linear form, is represented by its
normal vector w and a bias parameter b. These two terms
are the parameters that are learnt during the training phase.
Assuming that the data are linearly separable, there exist
multiple hyper-planes that solve the classification problem.
SVMs choose the one that maximizes the margin, assuming
that this will generalize better to new unseen data. This
hyper-plane is found by solving the following minimization
problem:

N
min ; 3[|wl* +C Y&
=1
S.t.: yi(WTf—Fb)Zl—gi,fizo,izl,'”,N, (6)

where &; are slack variables relaxing the constraints of
perfect separation of the two classes and C' is a regularization
parameter controlling the trade-off between the simplicity of
the model and its ability to better separate the two classes.

In order to classify a new unseen test example f;, its
distance from the hyper-plane is calculated by the following
equation.

f(£) =w"E;+b. (7)

In many cases the use of SVM is followed by the kernel
trick (a transformation of features), which allows for the
hyper-plane to take various forms. This is accomplished by
projecting the input data into a higher dimensional space
using a Kernel function K (f;, f;) to measure the distance
between the training instances f; and f;.

2) LDA: Linear Discriminant Analysis (LDA) [17] works
in a similar way with SVMs, by attempting to find the
separating line between the two classes. However, LDA does
consider the margin between the classes. More specifically,
based on the assumption that the covariance matrices of the
two classes are equal and have full rank (X9 = ¥; = 30),



the optimization problem degenerates to an analytic form for
the optimal w and b as a function of the covariance matrix
(X) and the mean (o, pt1):

w =37 (1 — po) (®)
1 _ _
b= §(T — o B0 o + 1" ) ©
where 7' is a threshold separating the two classes.

III. RESULTS

1) Graz dataset B: This data set consists of EEG data
from 9 subjects. The subjects were right-handed, had normal
or corrected-to-normal vision and were paid for participating
in the experiments. All volunteers were sitting in an arm-
chair, watching at the screen monitor placed approximately
Im away from the eye level. For each subject 5 sessions
are provided, whereby the first two sessions contain training
data without feedback (screening), and the last three sessions
were recorded with feedback. Three bipolar recordings (C3,
Cz, and C4) were recorded with a sampling frequency of 250
Hz. They were bandpass-filtered between 0.5 Hz and 100
Hz, and a notch filter at 50 Hz was enabled. The placement
of the three bipolar recordings (large or small distances,
more anterior or posterior) was slightly different for each
subject. The electrode position Fz served as EEG ground.
Further information on this dataset can be acquired in [18].

A. Data analysis protocol

The time segment of 0.5 - 2.5s after the onset of the visual
cue was used to train the algorithms. It is the same procedure
as that used in [11]. To evaluate the algorithms a sliding
window of 2 secs, from the beginning of the corresponding
trial until the end of it, is used. A continuous classification
output for each sample in the form of class labels (1, 2) is
provided by each algorithm. A confusion matrix was built
from all trials for each time point. From these confusion
matrices, the time course of the accuracy as well as the
kappa coefficient can be obtained. For each algorithm we
provide the largest (or peak) kappa value and accuracy.

To construct the spectral features we applied Welch’s
method in each EEG trial for each channel (C3 and C4).
Then the spectral features from each channel are concate-
nated to create the final spectral feature vector. For the
extraction of CSP features we take into account the number
of channels and in this case after the application of CSP
filter and the calculation of log-variances we take two CSP
- related features. Finally, the regularization parameter C' of
linear SVM was set to 1.

The Graz dataset B is composed by 5 sessions, 2 sessions
have been created without the feedback procedure and the
last 3 sessions with the feedback. To evaluate the various
algorithms the following division between the sessions has
been adopted [11]: the first 3 sessions have been used for the
training (2 sessions without feedback and the Ist session of

Table I
CLASSIFICATION SCHEMES UNDER STUDY.

Feature Extraction  Classifier  Classification Scheme
CSP LDA CSP-LDA
CSP SVM CSP-SVM
Welch SVM PW-SVM
Welch LDA PW-LDA

using feedback), while the rest 2 sessions (with feedback) are
used to evaluate the various algorithms. Also, the EEG data
from channels C3 and C4 are used for further processing.
Before applying the algorithms a band pass filter from 8 to
40 Hz have been applied on the data.

By combining the classifiers and the features extraction
methods, we obtain the various classification schemes that
are described in Table I. In addition to our presentation we
have included the results that are reported in [11]. In [11] a
filter bank in combination with the CSP filtering approach
was used to extract the features. Then a filter selection
algorithm based on mutual information was applied in order
to select relevant features, and finally for the classification
the Naive Bayesian Parzen Window (NBPW) classifier was
used [11].

In Tables II and III, we show the results by using our
algorithms as well as results reported in [11]. In all cases an
identical procedure for data analysis is used (i.e., filtering,
trial segmentation), the difference is on the machine learning
algorithm. By observing the results on Tables II and III we
can see that there is not an algorithm that performs best
on all subjects. Furthermore, the algorithm reported in [11]
provides the best mean kappa - value (0.59), while the Welch
approach in conjunction with linear SVMs gives us the
second best value (0.58). By applying a paired t-test (using
ttest matlab function) we observe no significant statistical
difference between the two methods (p=0.5313). Similar
observations can be extracted by looking the classification
results with respect to the measure of accuracy (see Table
I1I).

By looking the results on Tables II and III, besides
reporting the best performance, we can make additional
observations. We can see that, when we use the CSP features,
the performance between LDA and SVM is similar. How-
ever, when spectral features are used the behaviour of these
two classifiers is very different. We can see that SVM outper-
forms LDA considerably. Furthermore, the performance of
LDA, when spectral features are used, is the worst among all
presented classification schemes. This fact can be explained
by the high dimensionality of spectral features. Finally, it is
worth to note that in our analysis no tuning of any type have
been performed with respect to the regularization parameter
C of SVM. This fact leaves space for further improvement
in the performance of PW-SVM classification scheme.

Finally, it has to be noted that, for the particular dataset,
the bipolar channel data at C3 and C4 differ between



participants with respect to the spatial location of the ref-
erence electrode, which has been selected based on the
LDA classification accuracy [19]. In other words, the EEG
channels that are available for the current analysis have
been already optimized for LDA. It is expected that the
accuracy of the SVM approach could be further increased
by using other bipolar montages or channel data that has
been referenced towards a common reference electrode.

IV. CONCLUSION

In this work, a comparison on the discriminative ability
between the CSP related features and the spectral features
was performed. Our results indicate that the spectral features
of the signal are superior from CSP features if the appro-
priate classifier is used. The use of PSD estimation methods
provides us with a feature set of high dimensionality. The
classifier needs to take into account the above property in
order to achieve its highest performance. This fact is evident
when we compare the performance between the LDA and
the SVM in the case where the input feature set is the PSD
features.
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Table IT
CLASSIFICATION RESULTS WITH RESPECT TO KAPPA VALUE ON UNSEEN EVALUATION DATA ON DATASET GRAZ B

Subno CSP-LDA [11] FBCSP-MIRSR [11] CSP-SVM  PW-SVM  PW-LDA

1 0.3190 0.4000 0.2437 0.4625 0.3125
2 0.2290 0.2070 0.2929 0.2357 0.2071
3 0.1250 0.2190 0.1625 0.1687 0.1563
4 0.9250 0.9500 0.8938 0.8750 0.6500
5 0.5250 0.8560 0.4688 0.7500 0.6000
6 0.5000 0.6130 0.6313 0.6563 0.5313
7 0.5440 0.5500 0.4312 0.5375 0.3375
8 0.8560 0.8500 0.7937 0.8438 0.6375
9 0.6560 0.7440 0.7000 0.7500 0.3313
mean 0.5198 0.5987 0.5131 0.5866 0.4181
Table III

CLASSIFICATION RESULTS WITH RESPECT TO ACCURACY (%) ON UNSEEN EVALUATION DATA ON DATASET GRAZ B
Subno CSP-LDA [11] FBCSP-MIRSR [11] CSP-SVM  PW-SVM  PW-LDA

1 65.95 70.00 62.18 73.12 65.62
2 61.45 60.35 64.64 61.78 60.35
3 56.25 60.95 58.12 58.43 57.81
4 96.25 97.50 94.69 93.75 82.50
5 76.25 92.80 73.44 87.5 80.00
6 75.00 80.65 81.56 82.81 76.56
7 77.20 71.50 71.56 76.87 66.87
8 92.80 92.50 89.68 92.19 81.87
9 82.80 87.20 85.00 87.50 66.56

mean 75.99 79.93 75.65 79.33 70.90



