
Assessing the Usability of Gaze-Adapted Interface against

Conventional Eye-based Input Emulation

Chandan Kumar1, Raphael Menges1 and Steffen Staab1,2

1Institute for Web Science and Technologies (WeST) 2Web and Internet Science Research Group (WAIS)
University of Koblenz–Landau, Germany University of Southampton, UK

Email: {kumar, raphaelmenges, staab}@uni-koblenz.de

Abstract—In recent years, eye tracking systems have greatly

improved, beginning to play a promising role as an input

medium. Eye trackers can be used for application control

either by simply emulating the mouse and keyboard devices

in the traditional graphical user interface, or by customized

interfaces for eye gaze events. In this work, we evaluate

these two approaches to assess their impact in usability. We

present a gaze-adapted Twitter application interface with direct

interaction of eye gaze input, and compare it to Twitter in

a conventional browser interface with gaze-based mouse and

keyboard emulation. We conducted an experimental study,

which indicates a significantly better subjective user experience

for the gaze-adapted approach. Based on the results, we argue

the need of user interfaces interacting directly to eye gaze input

to provide an improved user experience, more specifically in

the field of accessibility.

Keywords-eye tracking; gaze input; eye-controlled interfaces;

social networks; user-centered design; usability analysis

I. INTRODUCTION

One of the major goals of novel interaction techniques is
to enable physically impaired people to be more socially
integrated. In todays social life, online platforms like Face-
book, Google Plus or Twitter play an important role in
sharing experiences of one’s life with other people [1].
Novel interaction techniques can help users with severe
disabilities to become more active in sharing content and
support communication with their friends and family through
social networks. These platforms act like an open window
to the world for disabled individuals – if they are able to use
such services. Most social network platform interfaces like
modern apps or webpages are built for today’s conventional
input methods like mouse and keyboard or touch, restricting
the proper access for physically disabled people. Eye-based
input cannot simply replace physical variants, since the
gaze is both used for perception and interaction [2]. The
methods for computer control by eye-based input can be
divided into two main categories: either eye tracking is
used to emulate physical input devices, e.g., mouse and
keyboard in the normal graphical user interface [3], [4],
[5], or the second approach, to execute desired interaction
by direct interpretation of input by eye movements in a
customized interface [6], [7], [8]. In this work, we follow
the second approach and demonstrate a gaze-adapted Twitter

application, which provides the social browsing functionality
in a completely gaze-controllable interface. Furthermore, our
goal is to evaluate the usability of proposed interface which
represents a modern approach to gaze-based interaction
mechanism.

Evaluation of gaze-controlled interactions lacks a univer-
sal benchmark; the comparison with physical mouse and
keyboard input sources would be biased, and comparison
with other assistive technologies would be only valid for a
specific target user group. Most of the current approaches
follow a trivial approach of qualitative questionnaire to judge
the usability [9]. However, it is rather interesting to inves-
tigate how different approaches of gaze interaction advance
the impact and end-user experience. In this work, we propose
a comparative evaluation of gaze-adapted interfaces with
a more conventional approach of gaze-based emulation. In
the conventional emulation approaches, eyes replicate mouse
and keyboard functionality, and user can perform all essen-
tial computer applications (e.g., social media browsing).

II. EYE-CONTROLLED APPLICATIONS

Modern remote camera-based eye tracker devices determine
eye movement by (a) identification of the eyes in the video
data stream, (b) the application of an eye model in order
to determine eye orientation and gaze direction, and (c) a
mapping of the inferred gaze onto the screen coordinates
[10], [11]. However, the accuracy is not yet sufficient to
identify the exact pixel position of users’ gaze. Eye trackers
can only determine the angle of the user’s gaze up to around
0.5 degrees, which is about 10 pixels on a 17 inch monitor
in 60 cm distance [6]. Gaze-controlled applications that need
selection of a rather exact pixel coordinate – as provided by
mouse pointer devices – employ different kinds of zooming
approaches [10], [12]. In addition, there is an uncertainty
about the user’s gaze on whether it should be interpreted as
intended interaction or as orientation and reading attempt,
commonly known as the Midas Touch problem [13]. Dwell
time has been introduced as the most common technique to
tackle this, i.e., if the user’s fixation exceeds a predefined
threshold, it is classified as intended action.

To operate the conventional computer applications (de-
veloped for mouse, keyboard or touch input) by gaze,



emulation software like Tobii Dynavox Windows Control1
or myGaze Assistive2 are available as commercial systems.
There exist open source alternatives, like OptiKey [5], which
work effectively with the newest generation of low-cost eye
trackers. These applications utilize dwell time and zooming
effects to emulate both mouse and keyboard events on
operating system level. Such emulation approaches work for
most applications, since the low-level input of mouse and
keyboard is almost always supported for computer software.
However, it is independent from the software development
framework of applications, e.g., rendering techniques and
internal data structures which might be critical for gaze-
adapted paradigms are ignored. For example, eye gaze
pointing may benefit from the semantic information, which
areas on the screen are interactive. Furthermore, manual
switching between mouse and keyboard emulation needs
additional interaction overhead.

For the users, it might be imperative to interact with
gaze-adapted applications that respond directly to their gaze
without an overhead of mouse and keyboard emulation. For
the gaze responsive design, such a native application would
have control on the underlying data structures and interaction
possibilities. There have been several approaches of building
gaze responsive elements to adapt the native application,
e.g., eye-controlled gaming [14], eye typing [7], gaze-based
image retrieval [15]. However, until now there have been no
specific studies to compare the impact and usability of such
gaze-adapted interface. It is stimulating to analyze, whether
the difference between a gaze-adapted interface and by
emulation executed applications is significant. In this work,
we have developed a gaze-adapted Twitter application3 and
compared it to the mobile Twitter page displayed in Mozilla
Firefox4, controlled with emulation of mouse and keyboard
using OptiKey software. Our prototype is open-source and
available at GitHub5.

III. GAZE-ADAPTED TWITTER

According to the global social media research summary
of 2016 [16], Twitter is one of the most popular social
networks. Users can share their thoughts in short messages
limited to 140 letters. The concept of tweeting, retweeting
and following in Twitter is rather simple, and a feasible
option for social communication via gaze-based interaction.
Moreover, Twitter API6 provides the most suitable program-
ming interface to send and access information. This is crit-
ical to create a custom application including all prominent
features users need to use this social platform. In comparison

1https://www.tobiidynavox.com/software/windows-software/
windows-control

2http://www.mygaze.com/products/mygaze-assistive
3https://youtu.be/NQQfB7nf3qw
4https://www.mozilla.org/en-US/firefox
5https://github.com/MAMEM/GazeTheWeb/tree/master/Tweet
6https://dev.twitter.com/rest/public

Figure 1. Personal wall containing the latest tweets by people whom the
user follows. The tweets are presented in the centered Content Area and
actions available for last fixated tweet are presented in the vertical Action
Bar on the right side of the screen. On top one can navigate through the
different screens with a global navigation menu.

Facebook Graph API7 does not allow to edit friends, create
events or exchange direct messages between users. Google
Plus API8 offered no functions to write postings, although
it seems to be available at the time this paper is written.
The public Twitter API is only restricted in terms of user
registration and the usual call limit within a time interval.

A. Design and Functionality

Design and positioning of interactive elements is a sig-
nificant aspect of gaze-adapted applications. Unintended
activation of interaction confuses users and has extremely
negative impact on user experience. Moreover, they need
passive areas for resting their gaze [2]. In the gaze-adapted
Twitter interface, the login page (Figure 2) features only
three buttons (aka sensitive fields queuing remaining dwell
time visually to a user) to trigger the entry of username, pass-
word and the connection request to Twitter. The two initially
named buttons summon a dwell time based keyboard (Figure
3) to enter the requested string, namely username or pass-
word. The keyboard design follows the common QWERTY
key layout to be comparable to the keyboard emulation
included in OptiKey. The keyboard’s dwell time is adaptable
by users through the activation of the double arrow buttons
on the upper right of the layout. After connection with the
user’s Twitter account, the personal wall containing tweets
of people the user is following is presented in the center
of the screen (Figure 1), called Content Area. When the
tweet at the bottom is selected, automatic vertical scrolling is
executed to center the currently viewed tweet and to display
older ones. Fixation of the tweet at top triggers a similar
behavior, as long newer tweets are available. Highlighting
the currently selected tweet in darker gray supports the

7https://developers.facebook.com/docs/graph-api
8https://developers.google.com/+/web/api/rest



Figure 2. Further screens in the application. From upper left to lower right: Login Screen, Search Page, Discover Page and Profile Page

visual guidance of the user. Available actions on the tweet
are shown in the so-called Action Bar. The Action Bar
presents contextual actions on the selected tweet within the
Content Area, so a user can scroll through the personal
tweets without triggering unintentional action while looking
at the Content Area. There are several interactions possible
with the selected tweet on the Action Bar, e.g., retweet,
respond, like or unlike and to go to the profile of the
person who posted or retweeted this tweet. To emphasize
the contextual awareness of the Action Bar, it is visually
merged with the selected tweet inside the Content Area.

There are five other screens in addition to the personal
wall, which can be accessed through the global navigation
bar on the top:

• Personal wall
• Send a tweet
• Discover trends
• Visit own user profile
• Private messaging for direct user communication
• Search and view other profiles

It can be seen in Figure 2 that the other screens of the
application like search or discover share the concept of
Content Area for Twitter content and Action Bar that offers
contextual actions.

Theses interfaces are developed through user centered
design for eye interaction, i.e. interface components such
as size, shape, appearance, feedback etc., which are vital
to enhance eye tracking accuracy for input control [6]. For
example, sizes of buttons are enlarged, their placement is
based upon element usage frequency and application control,
so natural viewing behavior does not interfere. All elements

are designed especially for eye tracking in their size and
the way the user interacts with them. Several alternatives
for eye gaze input like blinking, pupil dilation [2] were
explored, however dwell time based selection has been the
most natural and widely accepted mode of input.

B. Implementation

Twitter offers a public Representational State Transfer
(REST) API9 for developers to access a user’s information
and to submit tweets and messages. For this, the user has
to activate communication over this REST API10, which
is included in our application at first successful login11.
The API follows the OAuth12 protocol. There are various
libraries13 available to access the REST API in a convenient
way in different programming languages. Since our appli-
cation is written in C++ language, we decided to delegate
the twitcurl14 library for all communication with the social
network. It supports many necessary calls from the v.1.1 API
and has been extended on some features by manual request.
This can be easily achieved since twitcurl itself delegates the
communication to the curl15 library. Result of all requests
is a JSON string that is parsed into a DOM object tree by
RapidJSON16 for easier access.

9https://dev.twitter.com/rest/public
10https://apps.twitter.com
11https://dev.twitter.com/oauth/application-only
12https://dev.twitter.com/oauth
13https://dev.twitter.com/overview/api/twitter-libraries
14https://github.com/swatkat/twitcurl
15https://curl.haxx.se
16http://rapidjson.org



Figure 3. Dwell time based keyboard with QWERTY layout, featuring
adaptable dwell time, adjusted manually by the user.

The interface elements were implemented using eyeGUI
library [17], which supports the development of interactive
gaze interfaces with many vital aspects, like rendering,
layout, dynamic modification of content, support of graphics
and animation.

IV. EVALUATION

We conducted an experiment to evaluate the significance
and usability of the proposed application with the state of
art mouse and keyboard emulation software OptiKey. This is
an open source software that can replace mouse, allowing to
click, scroll and drag by eye movements. Moreover, OptiKey
offers a virtual gaze-controlled keyboard as alternative to
a physical one, enabling dwell time based typing into any
application. Figure 4 shows the OptiKey usage scenario in
Mozilla Firefox browser, considered for the experiment.

Both applications were evaluated at university campus,
where 13 participants (10M, 3F) aged between 20-39 took
part in the experiment. The participants had no prior expe-
rience with eye tracking. Both applications were controlled
with a low-cost Tobii EyeX17 device on a 24 inch screen with
a resolution of 1280x800 pixels. Dwell time was set for both
setups to a time of one second and the dictionaries for word
predictions were equalized. Additionally, the default pie-
chart dwell time visualization in OptiKey has been replaced
by a grow-effect, to match the one of our gaze-adapted
Twitter application.

A. Procedure
The participants had to perform representative tasks with the
system while being observed by supervisors. Two supervi-
sors were present, one introduced the project and assisted
the participant through the tasks. The other one observed
the participant’s reactions and feedback. Each participant
was instructed on how the experimental process will be
carried out in a short training session. A brief introduction

17https://tobiigaming.com/product/tobii-eyex

to the systems and a calibration process with the eye tracker
were presented in a short tutorial. Participants were asked to
perform specific tasks representing the most common social
media usage: Write a tweet and publish it; find a particular
user and follow her; find and like a certain tweet about
specified topic; explore the application like you would do
for social media browsing (5-10 minutes).

The tasks pose challenges to the participants in using
the keyboard, searching for profiles and using the follow
and like feature. These tasks inherently represent essential
control paradigms on traditional applications, e.g. mouse
movement, click, scroll, navigation etc. The independent and
the control variables were carefully noted prior to the ex-
perimental process. For counterbalancing, i.e., to negate the
system bias with tasks, some participants started performing
tasks first with gaze-adapted Twitter, while the others started
with the OptiKey software. The usability questionnaires
(described below) were asked for each system, immediately
after the respective experimental session.

System Usability Scale (SUS) questionnaire [18] has been
used to measure the usability of applications. The SUS
contains 10 questions with five point likert scale from
strongly disagree to strongly agree. The mental workload of
the participants is measured by the NASA-TLX standardized
questionnaire [19], [20]. The NASA Task Load Index (NASA-
TLX) contains six components: mental, physical, tempo-
ral demands, frustration, effort and performance. For each
component, the participant can decide the most applicable
scores on a scale from 1 (low) to 100 (high) in 5-point
steps. The participants were also asked to put weights on
each scale by comparing all scales pairwise. The benefit
of weighting is to increase the meaning of more relevant
scales. Additionally, participants were asked to fill out a
custom questionnaire regarding the functionality, handling
and design of the corresponding application.

Based on the idea of Discount Usability Testing by Jacob
Nielsen, the evaluation study was designed on a low-budget
basis [21]. Instead of video recording, the participants were
invited to use the thinking aloud method. This method
delivers insight into the thoughts of the participants and
replaces an expensive acquisition of equipment.

B. Results

Figure 5 shows the results of SUS evaluation for gaze-
adapted Twitter and OptiKey, which clearly indicate high
acceptance of gaze-adapted Twitter among participants. It
achieved a score of 72, which is above the average score of
68 as per SUS guidelines18, while OptiKey only achieves a
result of almost 50, which is considered as the lowest grade.
With the paired t-test, there was a significant difference in
the scores for gaze-adapted twitter (M=71.92, SD=12.87)
and OptiKey (M=49.8, SD=14.12), conditions; t(12)=3.498,

18http://www.measuringu.com/sus.php



Figure 4. Mobile Twitter webpage displayed with Mozilla Firefox and
controlled with OptiKey emulation software.

p=.0044 (95% CI 8.340 to 35.891). These results indicate
that the usability of gaze-adapted Twitter is higher than
conventional approach of eye-based emulation. Furthermore
users explicitly provided feedback on the proposed inter-
face being consistent, better orientation and less erroneous.
Despite being a novel interface, a direct link with eye
tracker seems much more intuitive and convenient to end
users, in contrast the mouse-based emulation was identified
cumbersome interaction process.

Figure 6 shows the average scores of the participants on
NASA-TLX scales, which indicates that the emulation based
software imposes higher task load on users in comparison
to gaze-adapted interface. More specifically, in the pairwise
weighting of NASA-TLX scales, mental demand, effort and
frustration were judged as the most relevant scales by the
participants. For these scales, gaze-adapted interface exhibit
much lower score (as shown in figure 6) representing less
effort required by users. Specially on the scale of frustration
a big difference between the systems can be observed
(scored and weighted about two times higher for OptiKey).
This indicates that using the eye movement to emulate
mouse and keyboard increases the frustration as the users
have to imagine the control with traditional input devices
and execute the emulation. The overall task load index of the

Figure 5. System Usability Scale scores

Figure 6. NASA-TLX average scores

systems were 63.8 and 46.7 for OptiKey and gaze-adapted
Twitter respectively. With the paired t-test, there was a
significant difference in the scores, conditions; t(12)=2.5879,
p=.0238 (95% CI 31.469 to 2.701).

In addition the comparative study results, the participants
shown some behavior patterns (observed by the supervisors)
which provides relevant guidelines for gaze-based interfaces.
For example the participants felt stressed when the interface
reacted constantly to their gaze, and when they found a
place in the interface to rest the eyes, a stress reduction was
observed. Hence the placement of interactive elements is an
important aspect. Another significant aspect is the role of
feedback, i.e., while performing input by the gaze, users are
very focused on the visual search task and overlook system’s
help (e.g., auto text suggestions while typing). This indicates
that the feedback mechanism should be integrated in the
visual search space of a particular task. Furthermore, the
participants prefer the option to personalize the interaction
with respect to their expertise, e.g., the typing speed of the
keyboard (variation of the dwell time).

V. CONCLUSION

Several individuals are affected by severe physical deficien-
cies, which significantly limit their ability to communicate
with the world. To tackle this problem, numerous stud-
ies have been carried out to create effective technologies.
Among these, eye tracking has emerged as a promising and
affordable technique. Eye tracking can be a great asset for
social media access, however the conventional approaches
or eye mouse emulation do not deal with the complex
design challenges of eye-controlled interfaces. We proposed
a gaze-adapted interface that supports unobtrusive gaze-
based interaction with Twitter. We evaluated the proposed
interface against OptiKey, which is a conventional approach
to control computer applications via mouse and keyboard
emulation. We reported that gaze-adapted interface is re-
garded as intuitive and easily interpretable for end users
in the prominent social media browsing tasks. Despite of



its novelty, it performed well on usability analysis and
required less mental demand from participants. The results
imply that gaze-adapted applications with a direct control of
gaze events must be considered for enhanced usability and
performance of eye tracking input environment.

The presented system could perform all essential op-
erations, furthermore, we are currently working on addi-
tional enhancements to include sophisticated gaze interaction
features such as secure login/password entry, and better
image/video interaction. In the future we want to enhance
the usability by combining gaze with other modalities such
as touch, speech, and brain-computer interfaces.

ACKNOWLEDGMENT

We would like to acknowledge the efforts from the students
who participated in the research project19 and had a major
role in prototype development and evaluation. Furthermore,
the work is supported by MAMEM20 that has received
funding from the European Union’s Horizon 2020 research
and innovation program under grant agreement number:
644780.

REFERENCES

[1] S. A. Hall, “The social inclusion of people with disabilities:
A qualitative meta-analysis.” Journal of ethnographic &
qualitative research, vol. 3, no. 3, 2009.

[2] R. Jacob and S. Stellmach, “What you look at is what you
get: Gaze-based user interfaces,” interactions, vol. 23, no. 5,
pp. 62–65, Aug. 2016.

[3] R. Bates and H. O. Istance, “Why are eye mice unpopular?
a detailed comparison of head and eye controlled assistive
technology pointing devices,” Universal Access in the
Information Society, vol. 2, no. 3, pp. 280–290, 2003.

[4] C. Lutteroth, M. Penkar, and G. Weber, “Gaze vs. mouse: A
fast and accurate gaze-only click alternative,” in
Proceedings of the 28th Annual ACM Symposium on User
Interface Software; Technology, ser. UIST ’15. New York,
NY, USA: ACM, 2015, pp. 385–394.

[5] “Optikey: Type, click, speak. v2.2.4,”
https://github.com/OptiKey/OptiKey/wiki.

[6] C. Kumar, R. Menges, and S. Staab, “Eye-controlled
interfaces for multimedia interaction,” IEEE MultiMedia,
vol. 23, no. 4, pp. 6–13, Oct 2016.

[7] I. S. MacKenzie and X. Zhang, “Eye typing using word and
letter prediction and a fixation algorithm,” in Proceedings of
the 2008 Symposium on Eye Tracking Research;
Applications, ser. ETRA ’08. New York, NY, USA: ACM,
2008, pp. 55–58.

[8] R. Menges, C. Kumar, D. Müller, and K. Sengupta,
“Gazetheweb: A gaze-controlled web browser,” in
Proceedings of the 14th Web for All Conference, 2017.

19https://west.uni-koblenz.de/en/news/talks/gazetheweb-tweet-your-eyes
20http://www.mamem.eu

[9] M. Porta and A. Ravelli, “Weyeb, an eye-controlled web
browser for hands-free navigation,” in Proceedings of the
2Nd Conference on Human System Interactions, ser. HSI’09.
Piscataway, NJ, USA: IEEE Press, 2009, pp. 207–212.

[10] P. Majaranta and A. Bulling, “Eye tracking and eye-based
human–computer interaction,” in Advances in physiological
computing. Springer, 2014, pp. 39–65.

[11] M. Kumar, J. Klingner, R. Puranik, T. Winograd, and
A. Paepcke, “Improving the accuracy of gaze input for
interaction,” in Proceedings of the 2008 symposium on Eye
tracking research & applications. ACM, 2008, pp. 65–68.

[12] C. Kumar, R. Menges, D. Müller, and S. Staab, “Chromium
based framework to include gaze interaction in web
browser,” in Proceedings of the 26th International
Conference on World Wide Web Companion. International
World Wide Web Conferences Steering Committee, 2017,
pp. 219–223.

[13] R. J. K. Jacob, “The use of eye movements in
human-computer interaction techniques: What you look at is
what you get,” ACM Trans. Inf. Syst., vol. 9, no. 2, pp.
152–169, Apr. 1991.

[14] C. Schaefer, R. Menges, K. Schmidt, M. Kuich, and
T. Walber, “Schau genau! an eye tracking game with a
purpose,” in Applications for Gaze in Games, 2014.

[15] L. Kozma, A. Klami, and S. Kaski, “Gazir: gaze-based
zooming interface for image retrieval,” in Proceedings of the
2009 international conference on Multimodal interfaces.
ACM, 2009, pp. 305–312.

[16] D. Chaffey, “Global social media research summary 2016,”
Smart Insights: Social Media Marketing, 2016.

[17] R. Menges, C. Kumar, K. Sengupta, and S. Staab, “eyegui:
A novel framework for eye-controlled user interfaces,” in
Proceedings of the 9th Nordic Conference on
Human-Computer Interaction, ser. NordiCHI ’16. New
York, NY, USA: ACM, 2016, pp. 121:1–121:6.

[18] “System usability scale (sus),” http://www.usability.gov/
how-to-and-tools/methods/system-usability-scale.html,
accessed: 2016-05-02.

[19] K. Vertanen, “Nasa-tlx in html and javascript,”
https://www.keithv.com/software/nasatlx/nasatlx.html,
accessed: 2016-05-02.

[20] H. P. R. Group, “Nasa task load index (tlx): Paper and
pencil package,” http://humansystems.arc.nasa.gov/groups/
tlx/downloads/TLX pappen manual.pdf, accessed:
2016-05-02.

[21] J. Nielsen, “Usability 101: Introduction to usability,” 2003.


