

 Page 1

Multimedia Authoring and Management using your Eyes and
Mind

H2020-ICT-2014 - 644780

D4.1

Report on the middleware architecture
and technical requirements

Dissemination level: Public (PU)

Contractual date of delivery: M7, November 30th, 2015

Actual date of delivery: M7, November 30th, 2015

Workpackage: WP4 Middleware for interaction through eyes and mind

Task: T4.1 Middleware Architecture Design

Type: Report

Approval Status: Final

Version: V0.6

Number of pages: 69

Filename: D4.1_Architecture_and_Technical_Requirements_Final.docx

Abstract

The purpose of this document is to describe MAMEM’s architecture covering the full spectrum of
involved components, ranging from the base platform and the sensors layer, all the way to our
Middleware, the Interaction SDK and the end-user applications. In particular, the document specifies
the adopted technologies, the programming environment, the range of functionalities that will be
provide by MAMEM, as well as the interfaces used to exchange information between the different
layers. In the end, a logic view of MAMEM’s architecture is presented, describing how everything can
fit together to facilitate the development of applications operated through the user’s eyes and mind.

The information in this document reflects only the author’s views and the European Community is not liable for any use
that may be made of the information contained therein. The information in this document is provided as is and no
guarantee or warranty is given that the information is fit for any particular purpose. The user thereof uses the information
at its sole risk and liability.

co-funded by the European Union

 Page 2

Copyright

© Copyright 2015 MAMEM Consortium consisting of:

1. ETHNIKO KENTRO EREVNAS KAI TECHNOLOGIKIS ANAPTYXIS (CERTH)

2. UNIVERSITAT KOBLENZ-LANDAU (UNI KO-LD)

3. EB NEURO SPA (EBNeuro)

4. SENSOMOTORIC INSTRUMENTS GESELLSCHAFT FUR INNOVATIVE SENSORIK MBH (SMI)

5. TECHNISCHE UNIVERSITEIT EINDHOVEN (TU/e),

6. MDA ELLAS SOMATEIO GIA TI FRONTIDATON ATOMON ME NEVROMYIKES PATHISEIS (MDA
HELLAS)

7. ARISTOTELIO PANEPISTIMIO THESSALONIKIS (AUTH)

8. MEDICAL RESEARCH INFRASTRUCTURE DEVELOPMENT AND HEALTH SERVICES FUND BY
THE SHEBA MEDICAL CENTER (SHEBA)

This document may not be copied, reproduced, or modified in whole or in part for any purpose
without written permission from the MAMEM Consortium. In addition to such written permission
to copy, reproduce, or modify this document in whole or part, an acknowledgement of the authors
of the document and all applicable portions of the copyright notice must be clearly referenced.

All rights reserved.

 D4.1 – V0.6

Page 3

History

Version Date Reason Revised by

v0.1

(alpha)

09/10/2015 alpha version to be checked by the
consortium members and the coordinator

Walter Nistico

V0.2 06/11/2015 Intermediate version for proving soliciting
the contribution from all involved partners

Walter Nistico,
George Liaros, Dario
Comanducci,
Chandan Kumar,
Spiros Nikolopoulos

V0.3 16/11/2015 Internal version for collecting follow-up
contributions

Walter Nistico,
George Liaros, Dario
Comanducci,
Chandan Kumar,
Spiros Nikolopoulos

V0.4

(beta)

18/11/2015 Beta version for internal review Walter, Nistico

V0.5

(pre-final)

27/11/2015 Version incorporate the comment from the
internal reviews and circulate for final
acknowledgement by the entire consoriutm

Walter, Nistico,

V0.6

(final)

30/11/2015 Proof reading and minor editing Walter, Nistico

Spiros Nikolopoulos

Author list

Organization Name Contact Information

SMI GmbH Walter Nistico walter.nistico@smi.de

CERTH George Liaros geoliaros@iti.gr

CERTH Spiros Nikolopoulos nikolopo@iti.gr

EB Neuro Dario Comanducci dario.comanducci@ebneuro.com

UNI KO-LD Chandan Kumar kumar@uni-koblenz.de

 D4.1 – V0.6

Page 4

Executive Summary

This report presents the output of the efforts allocated under T4.1 of WP4, which deals with
MAMEM architecture. The document covers the full spectrum of components that will be
necessary to satisfy MAMEM’s technical objectives.

In this respect, Section 2 addresses the considerations that have to do with the preferred
operating system, the programing language and the specification of the computing platform.
Section 3 elaborates on MAMEM’s middleware placing particular emphasis on the
synchronization between heterogeneous signals. Section 4 discusses the options that are
available for acting as the basis of MAMEM’s interaction SDK, as well as the preferred
platform. Section 5 provides a quick overview of BCI applications based on eye-tracking and
EEG signals, so as to motivate the necessity of an additional layer in the architecture
dedicated for handling the communication between the back-end system and the end-user
applications, described in Section 6. Finally, Section 7 presents the overview of MAMEM
architecture describing how everything can fit together under a common framework. Section
8 concludes the report.

In presenting MAMEM’s architecture we have adopted the following approach. Each section
elaborates on a different layer of the architecture by describing the modules that implement
the functionality of this layer and the interfaces that are used to communicate with the rest
of the layers. Finally, in the last main section of the report we present a schematic overview
of the entire architecture and describe the modules that belong in each layer, as well as the
interfaces that are used to communicate with each other. In this description, we make sure
to provide references to specific sections of this report (or other MAMEM deliverables) that
elaborate on the details of each module and interface.

 D4.1 – V0.6

Page 5

Abbreviations and Acronyms

API Application Programming Interface

BCI Brain Computer Interface

DoA Description of Actions

ECG ElectroCardioGram

EEG ElectroEncephaloGram

ET Eye Tracker

GSR Galvanic Skin Response

GUI Graphical User Interface

HCI Human-Computer Interface

HMD Head Mounted Display

HR Heart Rate

HW Hardware

LAN Local Area Network

LPT Line Print Terminal (used to designation a parallel port interface)

LSL Lab Streaming Layer

MD Muscular Disorder

OS Operating System

PC Personal Computer

PD Parkinson Disease

SDK Software Development Kit

SW Software

TCP Transmission Control Protocol

TTL Transistor Transistor Logic

UDP User Datagram Protocol

 D4.1 – V0.6

Page 6

Table of Contents

1 INTRODUCTION ... 10

2 BASE PLATFORM CONSIDERATIONS ... 13

2.1 Operating system .. 13

2.2 Programming language .. 13

2.3 Computing Platform Setup & Specifications ... 14

2.4 MAMEM installations .. 17

3 MIDDLEWARE ... 18

3.1 Industry Standards .. 19

3.2 Lab Streaming Layer .. 20

3.3 Sensor Interface .. 23
3.3.1 Eye Tracking Wrapper Application for LSL ... 24
3.3.2 EEG Wrapper Application for LSL ... 25
3.3.3 GSR and Other Sensors Interface Layer ... 26

3.4 Data Transport .. 26

3.5 Sensor Synchronization .. 26
3.5.1 Hardware Synchronization ... 27
3.5.2 Hardware Synchronization with External Trigger Events .. 28
3.5.3 Software Synchronization .. 30
3.5.4 Synchronization Pitfalls .. 30
3.5.5 Synchronization using LSL .. 31

3.6 Event Generation Interface .. 32
3.6.1 Signal Stream Event Generation Interface ... 33
3.6.2 String Steam Event Generation Interface .. 34

4 INTERACTION SDK ... 36

4.1 Industry Standards .. 36

4.2 OpenViBE .. 37

4.3 Visual programming, processing and visualization module 38
4.3.1 Visual programming ... 38
4.3.2 Processing boxes .. 40
4.3.3 Extending OpenViBE with new Boxes .. 43

 D4.1 – V0.6

Page 7

4.4 Supported acquisition devices.. 43

4.5 Discussion ... 45

5 APPLICATION LAYER .. 47

5.1 Generally established interaction modalities – Eye Tracking 47
5.1.1 Eye tracking in assistive technology ... 48
5.1.2 Eye tracking in e-learning ... 49
5.1.3 Eye tracking in gaming ... 50

5.2 Generally established interaction modalities – EEG .. 51
5.2.1 BCI Systems and EEG-based interaction modalities .. 51
5.2.2 BCI applications based on EEG ... 52

5.3 Native and web browser applications .. 53

6 APPLICATION-NETWORKING LAYER ... 55

6.1 Socket.IO client-server model .. 56

6.2 Messaging protocol ... 56

7 LOGICAL VIEW OF MAMEM ARCHITECTURE ... 59

8 CONCLUSIONS ... 64

9 REFERENCES .. 65

 D4.1 – V0.6

Page 8

List of Figures

Figure 1: MAMEM concept for enabling disabled people to participate in society 10

Figure 2: Different layers of MAMEM’s software architecture 11

Figure 3: A “dual PC” setup, with one Eye Tracking system connected to one computer and
the EEG connected to the second computer. The two computers communicate with each
other via a Local Area Network. 15

Figure 4: Role of the Middleware in the MAMEM architecture stack (figure taken from the
DoA [5] – updated to reflect the organization of MAMEM’s architecture into layers) 18

Figure 5: Generalized Middleware Architecture 19

Figure 6: Core transport library of LSL (source: [34]) 21

Figure 7: Network view of LSL (source: [34]) 21

Figure 8: iViewX Connector Interface 25

Figure 9: (a) System setup comprising an ET and an EEG sensor. (b) Corresponding
representation of the sensor data streams – ET (blue), EEG (gray) with different sampling
frequencies and offsets. If the timeline were synchronized, sample ETn would correspond to
sample EEGm. 27

Figure 10: “Free running mode” image acquisition in a CMOS sensor with rolling shutter
(source [15]). Since the time of the acquisition of contiguous frames in a sequence can be
partially overlapped, the highest achievable frame-rate is higher than in triggered image
acquisition. 28

Figure 11: Example of TTL logic signal: the HIGH state is usually defined as having a voltage
above 2V, while the LOW state has a voltage below 0.8V [17]. 29

Figure 12: An EEG device sending event markers using TTL signals to an ET device 29

Figure 13: Example of one dedicated device generating external synchronization markers. 29

Figure 14: Internal latency of a (ET) sensor 30

Figure 15: Diagram explaining the network topology of OpenViBE 38

Figure 16: OpenViBE Acquisition Server Configuration Window 38

Figure 17: OpenViBE designer interface under Windows 7 39

Figure 18: Configuration window for the Acquisition client 40

Figure 19: Minimal scenario of having a signal acquired by the device and displayed by the
designer. 40

Figure 20: System communication for people with disabilities (Asistsys) 49

Figure 21: The avatar is controlled by the player’s eyes (Schaugenau) 50

Figure 22: A general description of a BCI system (reprinted from [48]) 51

Figure 23: BCI application that allows the user to type by staring at flickering letters 52

 D4.1 – V0.6

Page 9

Figure 24: BCI application that allows typing based on Visual Evoked Potentials and a
hierarchical class split. 53

Figure 25: BCI application that allows navigating in the virtual world. 53

Figure 26: Typical flow of communication using messages in a client-server model 57

Figure 27: Overall MAMEM Architecture 59

List of Tables

Table 1: Pros and cons for the most popular programming languages 14

Table 2 Recommended System Specs (for the heavyweight installation, see Section 2.4 16

Table 3: Sensor devices considered for MAMEM’s heavyweight and lightweight installations
 17

Table 4: Existing solutions for serving as the core of MAMEM’s middleware 20

Table 5: Hardware supported by LSL (source: [35]) 23

Table 6: Comparing some of the most prominent open source frameworks for making BCI
applications. (source: [37]) 36

Table 7: List of processing methods available in OpenViBE (source: [43]) 43

Table 8: Full list of hardware devices supported by OpenViBE (source [47]) 45

Table 9: Methods for communication between different software processes. 55

Table 10: Association of MAMEM’s Layers, Modules and Interfaces based on the proposed
Architecture 61

 D4.1 – V0.6

Page 10

1 Introduction

MAMEM’s overarching goal, as defined in the DoA [5], is to integrate people with disabilities
back into society by endowing them with the critical skill of managing and authoring
multimedia content using eye-movements and mental commands. In reaching this goal, the
concept of Error! Reference source not found. has been proposed that, among others,
envisages the achievement of the following technical objectives:

Obj.1 – Capture, record and make available at the necessary scale, real-time and accurate
information about eye-movements, brain electric signals and bio-measurements.

Obj.2 – Develop the necessary algorithms for translating this information into meaningful
control that will take the form of semantic widgets.

Obj.3 – Implement a middleware sitting on top of current operating systems so as to make
these semantic widgets available as elementary building blocks for implementing
multimedia-related interfaces.

Obj.5 – Design, implement and evaluate a set of prototype interface applications that rely on
MAMEM’s middleware to execute the multimedia-related usage scenarios through the
user’s eyes and mind.

The goal of this report is to define the software architecture that will facilitate the
achievement of the aforementioned technical objectives.

Figure 1: MAMEM concept for enabling disabled people to participate in society

Patient & Clinician Academia & Research Industry & Society

Brain
electrical
signals

Eye
movements

Perspiration
& Heart Rate

WP2 WP3 WP4 WP5 WP6 WP7

WP1 (Project Management) & WP8 (Dissemination, Exploitation & Fostering Innovation)

and others …

Author

and others …

Share

vvvP
and others …

Manage

Persuasive Design

+ Ψ =

 D4.1 – V0.6

Page 11

What is evident from Figure 1 and the associated technical objectives is that MAMEM’s
architecture should be organized into layers. Indeed, Obj.1 calls for a sensors’ layer that will
acquire the signal from the sensor devices; Obj.2 calls for an interaction layer of algorithms
and methods that will compose and SDK for HCI using eye movements and mental
commands; Obj.3 calls for a middleware layer that will make transparent the
communication between the sensor devices and the interaction layer; and finally, Obj.4 calls
for an applications layer that will foster the development of the end-user applications. This
distinction into layers was made more concrete in the description of WP4 were the
arrangement of Figure 2 was used to demonstrate the flow of information across MAMEM’s
software architecture. The goal of this report is to give substance in each of the boxes
presented in Figure 2 and discuss the details that will be necessary to implement MAMEM’s
system.

Figure 2: Different layers of MAMEM’s software architecture

Apart from this preliminary identification of layers, the DoA [5] listed also a set of
requirements for some of them. Given that the sensors’ layer and the applications’ layer
were largely dependent on the technical and functional requirements - to be defined as part
of WP6, more emphasis was placed on the middleware and the Interaction SDK. In the
following, we summarize the goals and requirements that have been set for these layers.

Middleware: The goal of a middleware is to sit between the core API of the underlying
operating system and the high-level programming environment of an SDK. Thus, in the
context of BCI systems, its goal is to facilitate, on the one hand, the integration of add-on
sensor modules (i.e., eye tracker, EEG recorder and bio-sensors) and, on the other hand, the
execution of algorithms processing the captured signals. In what refers to the middleware,
there have been four basic requirements that motivated our decisions in designing its
architecture: a) hardware agnostic, in the sense of being able to support a long list of
existing sensor devices (i.e. EEG, eye-tracking and galvanic skin response) and keeping the
barrier very low for incorporating new devices, b) cross-platform, in the sense of being able
to support all major operating systems (i.e. Windows, Apple OS and Linux), c)
synchronization ready, in the sense of being able to receive signals from multiple sensors

 D4.1 – V0.6

Page 12

and serve them in the synchronized fashion, d) communication ready, in the sense of being
able to transparently communicate with MAMEM’s interaction SDK.

Interaction SDK: The goal of the Interaction SDK has been set on implementing the necessary
algorithms and methods for translating the acquired signals into meaningful commands for
the human-computer interface. In this case, the requirements motivating our decisions are:
a) transparent, in terms of the communication with the middleware, b) rich, in terms of the
supported methods and process, c) extendable, in terms of adding more methods and
processes, and d) easy to use, in the sense of allowing even non-experts to “program” their
own analysis process.

In presenting MAMEM’s software architecture, we specify all different components involved,
ranging from the sensor devices and the middleware, all the way to the interaction SDK and
the communication with the end-user applications. The logic instruments that we use to
describe our architecture are Layers, Modules and Interfaces. Layers are used to denote the
parts of our system that serve a different purpose. Modules are used to describe the core
functionalities performed in each layer and the Interfaces are used to specify how the
information flows from one layer to another. Throughout the document we make sure to
provide elaborated descriptions for each one of these Modules and Interfaces and towards
the end of this report we present how the different components fit together under a
common architecture.

In this respect, Section 2 addresses the considerations that have to do with the preferred
operating system, the programing language and the specification of the computing platform.
Section 3 elaborates on MAMEM’s middleware placing particular emphasis on the
synchronization between heterogeneous signals. Section 4 discusses the options that are
available for acting as the basis of MAMEM’s interaction SDK, as well as the preferred
platform. Section 5 provides a quick overview of BCI applications based on eye-tracking and
EEG signals, so as to motivate the necessity of an additional layer in the architecture
dedicated for handling the communication between the back-end system and the end-user
applications, described in Section 6. Finally, Section 7 presents the logic overview of
MAMEM architecture describing how everything can fit together under a common
framework. Section 8 concludes the report. Given that the sensors’ layer is the topic of
another deliverable (i.e. D2.1 – Prototype modules implementation for signal capturing [36])
it is not thoroughly discussed in this report.

Finally, it is important to note that in deciding about MAMEM’s software architecture our
intention has been to make the best possible use of the existing knowledge and
developments in brain computer interfaces and avoid replicating the development effort
that has been already undertaken by the respective community. In this respect, the open
source frameworks of LabStreamingLayer [12] and OpenViBE [10] have been chosen to play
an essential role in the implementation of MAMEM’s system.

 D4.1 – V0.6

Page 13

2 Base Platform Considerations

2.1 Operating system

In the project DoA (Description of Actions) [5], it has been set the ambitious goal to realize a
platform independent architecture for the software (SW) side of the MAMEM project. While
such goal has its merits to ensure the broadest possible accessibility to the system, it poses
extremely high challenges in the realization of the project, for a modest return in terms of
target population.

In fact according to recent statistics [1] over Desktop and Laptop internet browsing,
Windows XP and subsequent Windows versions accounts for 88.97% of all web market
share. If we consider tablets and smartphones the picture changes considerably, with
Windows accounting for 50.83%, Android for 25.63% and iOS for 16.24%. It is however to be
considered that there are no Eye Tracking devices which can be connected to smartphones,
and Android tablet support it is so far only announced but not available. The situation is
similar for scientific grade EEG sensors, while Emotiv’s EPOC recently added support for
Android and iOS [2].

Furthermore, different Operating Systems offer radically different interaction paradigms on
the application side, which increases the development effort that is necessary to support all
of them. So, while the proposed architecture will be flexible enough as to allow easy porting
to additional operating systems as these become viable options on the sensor side, the initial
efforts will be focused on getting the system to work on the platform which offers the
largest coverage in terms of user base as well as available sensors, Microsoft Windows.

2.2 Programming language

We tried to identify the most convenient programming language to implement MAMEM
software architecture. The main decision criteria for choosing the programming language for
the realization of the system are:

1. Ease of integration with the SDKs of the sensors which will be part of the system.
2. Good performance and low resource utilization, to allow near real-time interaction and

synchronization on affordable host systems.
3. Widespread knowledge and use of the programming language among the developers

community, to broaden the potential developer community and leverage as much as
possible existing libraries and tools.

4. Ease of portability to different operating systems to future-proof the system.

Considering those 4 criteria, Table 1 presents the best candidates for serving as
programming languages of the middleware, ranked by popularity according to the TIOBE
index [3]:

 D4.1 – V0.6

Page 14

Programming
language Pros/Cons

Supported on all OS platforms, produces the highest performing object
code (also on low power and embedded CPUs) and low level access to
sensors, for example to implement specific device drivers. The code can
be recompiled with some efforts to run on different operating systems.
(ranking is based on the popularity of both C and C++)

Supported on all OS platforms, easy to program, not optimal for
performance oriented SW.

Easy to program, good performance but Microsoft proprietary and
Windows only

Supported on all OS platforms, easy to program, not optimal for
performance oriented SW, allows very “loose” programming style which
can result in large projects being difficult to maintain without strong
discipline from all developers

Table 1: Pros and cons for the most popular programming languages

In consideration of its robust performance and the near real-time requirements for the
project, the language of choice for MAMEM will be C/C++.

The chosen eye tracking system, the SMI REDn Scientific [76], offers a C API for interfacing
with it using its SDK; furthermore all other popular ET Systems from SMI GmbH [69], Tobii AB
[65], The Eye Tribe [71], EyeTech DS [66] support C / C++ APIs. Similarly, the chosen EEG
recording system EBNeuro BEPlusLTM [75] amplifier offers a C++ SDK and this is the case for
all widespread EEG recording systems.

2.3 Computing Platform Setup & Specifications

In our target system, the Eye Tracker and the EEG are sensors which can require a significant
amount of processing power.

Indeed, all modern eye tracking systems are based on one or more InfraRed cameras
capturing real time video streams of the user’s eyes. These video streams are usually
transferred to a host PC through a high speed connection (USB 2.0 or 3.0, Firewire, GigE or
CamLink) on which runs an eye tracking software. This software consists of a set of complex
and usually proprietary computer vision algorithms which are executed on the host PC CPU –
although a few ET devices exist which mount on-board processing capabilities.

Similarly, EEG recording systems capture the mean electrical activity of the brain in different
locations of the head through a set of electrodes placed on the scalp. This activity is
subsequently amplified through an amplifier that generates, what is usually referred as raw
data, i.e. full bandwidth sampled signals. However, in order for these signals to become
usable in a BCI system a certain amount of pre-processing steps are employed, such as de-

 D4.1 – V0.6

Page 15

noising, artefact removal, band-pass filtering and spectral analysis. If we consider that in a
BCI setting most of these operations will have to be performed on-line, and occasionally in
the full range of captured signals (i.e. can range from 8 to 256), it is evident that the
algorithms that are necessary to generate high-level events can take significant amount of
processing resources.

On the other hand Galvanic Skin Response sensors measure single channel, slow evolving
signals and do not require particularly complex algorithms to be processed; the same can be
said for heart rate sensors.

With the sensor array chosen for MAMEM (one EEG, one ET and one GSR sensor) one
common configuration used to minimize possible data loss would be a dual PC setup (see
Figure 3), with one PC dedicated to processing the video streams coming from the ET
module, and the other PC performing the signal processing pertaining to the EEG channels;
the GSR sensor can be connected to either PC due to its low resource usage.

Figure 3: A “dual PC” setup, with one Eye Tracking system connected to one computer and
the EEG connected to the second computer. The two computers communicate with each

other via a Local Area Network.

Such a dual PC setup ensure that the concurrent load of ET and EEG processing does not
(temporarily) overwhelm the system capabilities. This can happen for a number of reasons
due to the non-deterministic nature of the computational load deriving from the sensors, as
well as the resource scheduling (CPU, memory, etc) on commercial, non real-time Operating
Systems such as Microsoft Windows or MacOS.

When such a high temporary peak in the processing load occurs, it can happen that either
one of (or all) the sensor data cannot be processed within the expected time-slot, resulting
in loss of data.

 D4.1 – V0.6

Page 16

As it minimizes the chances of temporary data loss, such dual PC setup is a popular
arrangement for scientific research which combines ET and EEG, but it also has some serious
drawbacks:

 The total system cost is significantly higher when using 2 distinct PCs, and while this is
acceptable in a lab environment, it would pose a higher barrier to a broad adoption of
the MAMEM system as an assistive device.

 Even more important, the use of 2 PCs would limit the mobility and portability of the
system, taking twice as much space, and consume twice as much energy.

 The data synchronization between the 2 systems becomes more difficult as each PC has
its own clock and it is a well known fact in distributed systems that different clocks on a
PC network have different offsets and tend to drift apart [4].

 The need for a (reliable) LAN connection between the PCs, ideally through a cable and
router. This is due to the fact that wireless networks have unpredictable latencies which
can be affected by difficult to control environmental factors such as sources of
electromagnetic interferences in the same spectrum, other wireless networks active in
the same space, etc.

As the goal of MAMEM is to realize an HCI interaction device, temporary data loss is not a
major issue as the only practical consequence is a momentary interruption in the service
offered by the device. As long as such interruption is short in duration and sporadic in
occurrence it will not affect negatively the usability of the system. However, in consideration
of all aforementioned drawbacks of the dual PC arrangement, it is more practical to use a
single PC to process the data provided by all sensors and the respective event algorithms.
The initial specs of such PC will be conservatively "high end" (i.e. heavyweight installation,
see Section 2.4 to ensure a smooth functioning of all sensors without too many
interruptions, and as the system matures we will propose a minimum viable configuration
(i.e. lightweight installation, see Section 2.4 to lower the total system cost and possibly allow
further portability.

The recommended initial specs are summed up in the following Table 2.

System Property Initial Recommended Specs Future Specs

CPU
Quad Core Intel Core i5 (5th
generation) or better Core i3 or Atom Z3xxx

Operating System Windows 8.1 64bit Windows 10

PC Form Factor Desktop / Tower Laptop or Tablet

Main Memory 8GB or more

Connectivity USB3.0 interface with Intel Chipset

Add-ons

LPT interface add-on card to
experiment with HW
synchronization

Table 2 Recommended System Specs (for the heavyweight installation, see Section 2.4

 D4.1 – V0.6

Page 17

2.4 MAMEM installations

In MAMEM two types of installations are envisaged, a heavyweight and a lightweight. The
goal for the heavyweight installation is to fully support MAMEM’s experimental process
without posing any restrictions on the hardware, stemming from the requirements of
portability, cost-effectiveness and easy of use. This installation will be used to facilitate the
development of the novel algorithms for translating the signals into commands and build-up
the interaction SDK.

When the interaction SDK reaches a certain level of maturity, we will also implement a
lightweight version of MAMEM installation. Our goal with this lightweight installation is to
be: a) easily portable so as to offer MAMEM functionalities in a home environment, b) cost-
effective in terms of the employed sensor devices so as to be affordable by an individual,
and c) easy to setup and configure, so as to support the scenario of a non-expert using this
installation for interacting with his personal computer. The main challenge for the
lightweight installation is to support the functionalities of the interaction SDK while
addressing the requirements of portability and cost-effectiveness.

Table 3 presents the array of sensors that have been selected by MAMEM consortium to
implement the heavyweight and lightweight installation.

Installation EEG Sensor Eye-tracking GSR Sensor

Heavyweight EBNeuro BEPlusLTM
[75]

SMI iViewREDN [76] Shimmer3 GSR+ [77]

Lightweight Emotiv EPOCH [78] myGaze Assistive 2 [79] Shimmer3 GSR+ [77]

Table 3: Sensor devices considered for MAMEM’s heavyweight and lightweight installations

In the case of CERTH and given the availability of an existing EEG recording installation in its
premises, the experimental process will be also supported by the EGI 300 Geodesic EEG
System (GES 300) [80], using a 256-channel HydroCel Geodesic Sensor Net (HCGSN).

 D4.1 – V0.6

Page 18

3 Middleware

As shown in Figure 4, MAMEM middleware runs on top of the sensors layer with the aim to
make transparent the process of signal acquisition and de-noising, as well as its
synchronization through time-stamping across different sensor devices. Moreover, through
the Interaction SDK our goal is to also make transparent the process of interfacing with the
function calls of the underlying operating system for accessing the navigation controls of a
software application. In order to achieve this, our middleware will rely on the APIs offered by
the operating systems for interfacing with their core and acquire the signals. Subsequently,
the middleware will take care of synchronizing the different signals based on their
timestamps and serve the synchronized signals to the interaction SDK. This SDK will
incorporate the functions necessary to process the signal so as to translate it into interaction
commands. Finally, the last objective that has been set for the design of our architecture is
for MAMEM’s middleware and SDK to facilitate their extension with new, third party
interaction paradigms for touch-less interface control.

Figure 4: Role of the Middleware in the MAMEM architecture stack (figure taken from the
DoA [5] – updated to reflect the organization of MAMEM’s architecture into layers)

Specifically, the role of the middleware as a software component is to provide a glue layer
which collects and processes the signals from the sensors, provides mechanisms to
synchronize them and put them all on a single time scale, and passes the sensor data to the
higher layers.

On top of the (Sensor) Middleware sits another abstraction layer, called Interaction SDK,
which receives the sensor data, passes it to the specialized data processing algorithms which
generate events out of the raw sensor data, and passes the events with their own
timestamps to the application layer.

 D4.1 – V0.6

Page 19

In this sense, the Interaction SDK takes also the role of mediating between the middleware
and the end-user applications, so we can speak of a Generalized Middleware which includes
both the sensor middleware and the Interaction SDK (Figure 5).

The scope of this section is focused on the (sensor) Middleware, which will provide the
foundation upon which the higher interaction layers and applications will be built. Sections 4
and 5 provide a discussion for the interaction and application layers.

Figure 5: Generalized Middleware Architecture

3.1 Industry Standards

The natural first step to plan the middleware architecture and its realization was to search
for existing solutions addressing some of the challenges posed by our project, with the
intention to integrate, augment and customize for our system.

As ET and EEG interfacing and synchronization is already quite common in the research field,
we found a number of ready solutions which provide the basic functionalities of data
acquisition, synchronization, time stamping, and data transport.

Significantly different techniques exist, stemming from different requirements, especially in
the field of synchronization; a summary of this will be provided in Section 3.5 . Table 4
discusses the pros and cons for some of the existing solutions.

Solution Discussion

Brain Vision
Analyzer [6]

Commercially available software package from Brain Products GmbH
[6]: it performs automatic synchronization of EEG and ET data on the
basis of common TTL event markers (See Chapter 3.5.1); however the
synchronization is realized offline at the end of the experiment and
hence is not suitable for our project.

EYE-EEG [1] A similar solution, but open source, is EYE-EEG [7], a plug-in for
EEGLAB [8] which is a Matlab toolbox for processing and analyzing EEG

 D4.1 – V0.6

Page 20

data. Synchronization is based on HW TTL markers and is offline; a
number of manual steps are required to format the data in a way that
it can be imported and processed then in EEGLAB.

Acqknowledge [9]

From BIOPAC [9] is another widely adopted commercial software for
analysis, recording and synchronization of EEG signals; it offers a large
number of predefined filters and analysis routines, has built-in support
for ECG signals, however it also works only offline.

VRPN [11]

Middleware designed to offer a network-transparent interface
between a set of different sensors possibly located on multiple host
PCs. It is real-time, multi-platform (Windows, OSX, Linux, Android) and
it is generally possible to support new devices by writing appropriate
plugins, however its main field of application, as the name suggests, is
Virtual Reality systems, and has a broad support of drivers and plug-
ins only for motion trackers (e.g. Microsoft Kinect, 3D Mice, OptiTrack,
etc).

Labstreaminglayer
[12]

Open source middleware specifically developed with the goal to
provide a unified collection of measurements from heterogeneous
sensors to be used in research applications. It is multi-platform
(Windows, Linux, OSX), supports wrapper interfaces for the most
common programming languages (C, C++, Python, Java, C#, Matlab),
can work online as well as on recorded data, can seamlessly transport
data across a network of PCs, provides means of timestamping and
synchronization of sensor data, and already supports a large number
of EEG, ET, mice and motion capture sensors.

Table 4: Existing solutions for serving as the core of MAMEM’s middleware

Since LabStreamingLayer already offers a significant portion of the required functionality
required for MAMEM middleware, it has been decided to become a core component of our
architecture and be used to collect data from the sensors, data transport and
synchronization.

3.2 Lab Streaming Layer

Lab Streaming Layer (LSL) is a system for the unified collection of measurement time series
in research experiments that handles both the networking, time-synchronization, (near-)
real-time access, as well as (optionally) the centralized collection, viewing and disk recording
of the data. The LSL distribution consists of two main components:

a) The core transport library (liblsl) and its language interfaces (C, C++, Python, Java, C#,
MATLAB), as shown in Figure 6:. This library that constitutes the heart of LSL is general-
purpose and cross-platform (Win/Linux/MacOS, 32/64), satisfying the platform
independent requirement that we have set for MAMEM’s middleware.

 D4.1 – V0.6

Page 21

Figure 6: Core transport library of LSL (source: [34])

b) A suite of tools built on top of the library, including a recording program, online
viewers, importers, and apps that make data from a range of acquisition
hardware available on the lab network (for example audio, EEG, ET, or motion capture),
as shown in Figure 7. This suite of tools makes evident the simplicity of extending LSL
with new drivers (e.g. for supporting new sensor devices), or communicating with third
party tools (e.g. like SDKs for processing, or viewing the signals) and satisfies the
requirement of adopting a modular and extendable architecture.

Figure 7: Network view of LSL (source: [34])

The lab streaming layer was originally developed to facilitate human-subject experiments
that involve multi-modal data acquisition, including both brain dynamics (primarily EEG),
physiology (EOG, EMG, heart rate, respiration, skin conductance, etc.), as well as behavioural
data (motion capture, eye tracking, touch interaction, facial expressions, etc.) and finally

 D4.1 – V0.6

Page 22

environmental and program state (for example, event markers). Thus, it already supports an
extended list of devices, as presented in Table 5. It is evident from this Table that LSL covers
a wide range of existing hardware devices and, to a large extent, covers the hardware-
agnostic requirement that has been set for MAMEM’s middleware.

EEG Hardware (un-tested systems are marked with u)

ABM B-Alert X4/X10/X24 wireless (u)

BioSemi Active II Mk1 and Mk2

Brain Products ActiChamp series

Brain Products BrainAmp series

BrainVision RDA client

Cognionics dry/wireless

Enobio dry/wireless (u)

g.Tec g.USBamp

g.Tec g.HIamp (u)

MINDO dry/wireless

Neuroscan Synamp II and Synamp Wireless (u)

EGI AmpServer

BEPlusLTM (as part of MAMEM)

Emotiv EPOCH (as part of MAMEM)

Eye Tracking Hardware (untested systems marked with a (u)

SMI iViewX

SMI Eye Tracking Glasses

Tobii Eye trackers (u)

SR Research Eyelink (very basic)

Custom 2-camera eye trackers (with some hacking)

Human Interface Hardware

Computer mice, trackballs, presenters, etc.

Computer keyboards

DirectX-compatible joysticks, wheels, gamepads and other controllers

Nintendo Wiimote and official expansions

Motion Capture Hardware

PhaseSpace

NaturalPoint OptiTrack (some versions)

Microsoft Kinect

AMTI force plates with serial I/O

Multimedia Hardware

PhaseSpace

 D4.1 – V0.6

Page 23

NaturalPoint OptiTrack (some versions)

Microsoft Kinect

AMTI force plates with serial I/O

Table 5: Hardware supported by LSL (source: [35])

In the following we provide further details on how LSL: a) interfaces with the sensor devices,
b) achieves reliable data communication, c) performs the near-time synchronization of
heterogeneous signals, and d) communicates with the environment of the end-user
application through event markers.

3.3 Sensor Interface

The sensor interface is the lowest layer of the middleware (see Figure 5). Its scope is to
provide an abstract interface for the main sensor types used in the project – currently Eye
Tracking, EEG and GSR sensors. This interface is used to connect the middleware with each
sensors’ SDK with the intention to acquire sensor data, provide configuration facilities, and
where direct user input is required provide a user interface.

LSL defines its own generic abstract interface for sensors, based on three main concepts: a)
Stream Outlets, b) Resolvable functions and c) Stream InLets.

Stream Outlet is a time series of data which is streamed on the “lab network” defined by
LSL; the data is pushed into a Stream Outlet sample by sample in the form of chunks, can be
single channel or multi-channel and formatted in common data types: integers, floats,
doubles and strings. In addition stream outlets can have attached metadata in XML format,
which can be used as a kind of header to describe the format and use of a certain stream.

Resolve functions: these allow to resolve streams that are present on the lab network
according to content-based queries (for example, by name, content-type, or queries on the
meta-data). The service discovery features do not depend on external services such as
zeroconf and are meant to drastically simplify the data collection network setup

Stream Inlets: for receiving time series data from a connected Stream Outlet. Allows
retrieving samples from the provider (in-order, with reliable transmission, optional type
conversion and optional failure recovery). Besides the samples, the meta-data can be
obtained (as XML blob or alternatively through a small built-in DOM interface).

To connect a sensor device to LSL, one has to implement a suitable wrapper (in one of the
languages supported by LSL, see Section3.2) which creates a Stream Outlet object, it
specifies the number and type of data channels which the sensor supports, and pushes the
samples generated by the sensor through the Stream Outlet, making them available to
“clients” in the LSL network.

We’ll show a very simple example in C++.

 It starts by including the C++ library header:

 D4.1 – V0.6

Page 24

#include "lsl_cpp.h"

 Then, we declare a stream Info object which specifies our sensor will be identified as
“MyEEG”, it is an EEG with 100 Hz sample rate where each sample is composed of 8
channels, each channel carrying one float (32 bit) value:

lsl::stream_info info("MyEEG","EEG",8,100,lsl::cf_float32,"myuid");

 We create a Stream Outlet object with the properties we just specified in the info
object

lsl::stream_outlet outlet(info);

 We can now stream samples using the outlet

// Declare a buffer for our sample

float sample[8];

// Stream the samples into the outlet

while (true) {

// fictious function which returns a sample from my EEG device and

// copies it into our sample buffer

getSampleFromMySensor(sample);

// Push the sample into the LSL outlet

outlet.push_sample(sample);

}

For more details about LSL coding guidelines, see [13].

3.3.1 Eye Tracking Wrapper Application for LSL

LSL already includes wrapper applications or “Connectors” based on the Stream Outlets
concept for the major ET systems on the market, namely SensoMotoric Instruments’ iViewX
and iViewNG based systems [69], Tobii [65] and SR Research Eyelink [81].

 D4.1 – V0.6

Page 25

Figure 8: iViewX Connector Interface

As an example, the SMI iViewX Connector requires to specify the address and port at which
the eye tracking server can be reached, as shown in Figure 8. Then by clicking “Link” the data
will be streamed to the LSL network. A very similar type of connector is available for the
Tobii systems.

It is furthermore possible to get a live visualization of the eye tracking data by configuring
the display window properties (left-top corner coordinates, width and height of the display
window) and by clicking “Open Display” the gaze data will be visualized as red circle over the
gray display window.

The main limitation of such connectors is that they do not allow to calibrate the eye tracker,
which is assumed to be already calibrated; this is not a real issue if the eye tracker is
connected to the same PC where LSL is running (as in the suggested setup, see Section 2.3 ,
since it is possible to configure and execute the calibration by directly using the calibration
SW which is part of each eye tracker SDK.

In a multi-PC environment the connector could be extended to configure and start a
calibration process.

3.3.2 EEG Wrapper Application for LSL

As in the case of ET, EEG data should be sent to an outlet LSL stream and received by the
middleware in an inlet LSL stream. Both the devices for the heavyweight and lightweight
configuration have the functionalities to send their data trough the LSL outlet stream.

Since the heavyweight device, i.e. the BEPlusLTM amplifier by EN Neuro, was not already
compliant with LSL a dedicated SDK was developed in order to easily integrate that device
with LSL, as part of deliverable D2.1 [36] (see Section 5.3.1 of D2.1). At a later stage of the
project, the EPOCH device will be also directly supported to connect with LSL.

 D4.1 – V0.6

Page 26

EEG sensors do not need a calibration routine, as they provide low level electrical signals
which need to be interpreted by complex algorithms. Such event generating algorithms are
placed much higher in the SW stack. However EEG sensors require an impedance-check
procedure at the beginning of a session to ensure that the electrical connection is working
properly. Thus, the impedance-check procedure will be part of the EEG interface for LSL.

3.3.3 GSR and Other Sensors Interface Layer

Currently there is no supported GSR interface in the standard LSL distribution, however the
mechanism to implement one using the Stream Outlets is the same as for ET and EEG
sensors. It is actually easier since they do not require any configuration option.

Thus, the same approach adopted for the EEG interface layer is exploited also for the GSR
module. Given that the selected device (i.e. the Shimmer3 GSR+ [77]), was not compatible
with LSL, a dedicated SDK was developed to collect the bio-measurements data and send
them towards LSL. See section 7.3 of deliverable D2.1 [36] for a detailed description.

3.4 Data Transport

The role of middleware in a network of heterogeneous sensors and computers is to provide
a transport layer to collect the data being generated on the PCs where the sensors are
attached and deliver it to the computer(s) where the user applications are running – as
efficiently as possible while ensuring that no data gets lost somewhere on its way in the
network.

LSL offers network transport functionality in a completely transparent manner. Stream
Outlets and Inlets can be created on any PC in a local network and the user does not have to
specify server addresses or network protocols. Data will be streamed from an Outlet to an
Inlet in exactly the same way whether both components reside on the same machine or on
two different PCs connected by a network.

LSL uses several mechanisms to ensure maximum reliability even in case of temporary
network failures:

 Although UDP is used for discovery due to efficiency reasons, data samples are
streamed only using TCP which is a protocol that ensures in-order, guaranteed
delivery of the data

 Data is buffered both at the sender and receiver side so that a copy of it exists in case
of intermittent network failures

 It provides automatic failure recovery even in case of application or computer crash

For more details see [14].

3.5 Sensor Synchronization

In a system comprising a network of heterogeneous sensors, possibly connected to multiple
PCs on a local network, it is necessary to synchronize all sensor data on a common time axis
in order to fuse the data to detect events. As already mentioned in Section 2.3 , in this
scenario we will generally have to consider a number of factors:

 D4.1 – V0.6

Page 27

 Sensor sampling frequency: in general will differ among the different sensors, in
dependency with the characteristic frequency spectrum of the measured signal, so for
example typical values can be 30Hz for the ET, 250Hz for EEG, and 1Hz for GSR.

 Clock offset: the time scale of each sensor in general will have a different starting point.

 Clock drift: even if the clock offset were synchronized, multiple clock generators in a
distributed system tend to drift apart from one another as a function of temperature,
clock generator technology and other environmental variables.

Figure 9 demonstrates how two signals can be de-synchronized in a dual-PC setup.

(a) (b)

Figure 9: (a) System setup comprising an ET and an EEG sensor. (b) Corresponding
representation of the sensor data streams – ET (blue), EEG (gray) with different sampling

frequencies and offsets. If the timeline were synchronized, sample ETn would correspond to
sample EEGm.

3.5.1 Hardware Synchronization

Conceptually, the easiest and most precise way to synchronize a set of sensors is to use HW
synchronization. Ideally this can be done by using a single clock generator to simultaneously
trigger the signal acquisition of all sensors. This approach is however often not feasible,
because it would require all sensors to be already designed to accept a certain external clock
signal, or to specifically design a set of sensors for this specific purpose. Next to this, there
are also some practical limitations:

 Camera based systems using CMOS sensors such for example ET cannot run at their
maximum frame rate when the image acquisition is triggered by an external signal,
because this prevents the overlapping of image acquisition between frames, which
happens when the cameras have their own clock and work in Free Running Mode (see
Figure 10).

 D4.1 – V0.6

Page 28

 Even with a common clock source, if the transmitting lines are long enough and have
different lengths, clocks will drift apart at the destination. This drift will be a function of
line length, material, temperature and other factors influencing the travelling velocity of
electrons in the medium.

 Currently no eye tracking system on the market allows the image capture to be directly
triggered by an external signal.

Figure 10: “Free running mode” image acquisition in a CMOS sensor with rolling shutter
(source [15]). Since the time of the acquisition of contiguous frames in a sequence can be
partially overlapped, the highest achievable frame-rate is higher than in triggered image

acquisition.

3.5.2 Hardware Synchronization with External Trigger Events

A popular way to achieve HW based synchronization between EEG and ET systems is to use
external trigger event markers.

This is achieved by having one device send the other(s) a series of “event markers”, typically
using a TTL logic (Transistor-Transistor Logic) electrical signal [16] (see Figure 11 and Figure
12) using an LPT (parallel port) interface. One example of this could be a marker signalling
the occurrence of an event such as the beginning of an experiment, or the display on a
monitor of a certain stimulus. The receiving device will then sample the signal change (from
LOW to HIGH or a pulse like transition LOW-HIGH-LOW) in its own clock scale (associating it
with its own timestamp) and record it in its own data stream.

By matching common events (using such markers) among the different sensor data streams,
it is then possible to synchronize them, for example by shifting (clock offset), scaling (clock
drift) and resampling (different sampling frequencies) one time scale with respect to the
other, so that all markers appear at the same time on all data streams (see also Figure 9).

 D4.1 – V0.6

Page 29

Figure 11: Example of TTL logic signal: the HIGH state is usually defined as having a voltage
above 2V, while the LOW state has a voltage below 0.8V [17].

Figure 12: An EEG device sending event markers using TTL signals to an ET device

Another popular arrangement is to use a dedicated device (such as the Cedrus StimTracker
[18]) to generate event triggers which are relayed to all the different sensors. These triggers
can be activated by an additional type of environmental signals (Figure 13).

Figure 13: Example of one dedicated device generating external synchronization markers.

Such signals can be activated based on audio or light levels exceeding a certain threshold,
corresponding to the onset of visual or auditory stimuli in the experiment. Another useful
possibility is then for a stimulus presentation software starting an experiment or showing a
particular stimulus to be able to communicate with the StimTracker using the USB interface
and this generating a TTL signal marker which is then passed to the EEG and ET.

HW based synchronization using event markers can be very accurate and it is the de facto
standard in research using multimodal biological sensors such as EEG and ET. However its
main limitation is that by its own nature can only be performed offline at the end of an
experiment (need to parse data streams to locate matching events, shifting, scaling and
resampling timeline(s)) and this is not suitable for real-time human-computer interaction
projects such as MAMEM.

 D4.1 – V0.6

Page 30

3.5.3 Software Synchronization

The simplest form of SW synchronization is having all sensors connected to a single PC, with
the PC generating a timestamp using its own central clock every time a new sample arrives.
If the sensors are connected to a network of PCs however, it is generally impossible to keep
all “physical clocks” of the different PCs running at the same frequency [4], so the
timestamps will drift.

One easy way to deal with this problem when connected to the internet is to periodically
update all the clocks using time servers broadcasting Coordinated Universal Time (UTC),
which is defined to be the mean solar time at 0° degree longitude [2]. Using this method, it is
possible to achieve a synchronization accuracy of about 1 second, provided that the
synchronization with the UTC servers is happening on a frequent basis.

If higher synchronization accuracy is required, an old but still golden standard is the Network
Time Protocol (NTP) [20]. NTP is standardized, designed to work on unreliable, variable
latency networks, and it can typically synchronize all computers clocks in a network within a
few milliseconds of one another, with sub-millisecond accuracy in the best case. It is not in
the scope of this document to discuss the details how this protocol works, but it is based on
a client computer sending messages and measuring clock offset and round trip time to a
number of servers.

3.5.4 Synchronization Pitfalls

Figure 14: Internal latency of a (ET) sensor

Even having perfectly synchronized clocks, and depending on the required synchronization
accuracy (for example, <1ms), there may be additional latencies to be taken into account
and – when possible – compensate. In particular, sensors which are based on camera
technology (such as ET) have a chain of internal latencies from the time an event occurs (e.g.
an eye moves) till the time such event is reflected in the data available through the device’s
API.

 D4.1 – V0.6

Page 31

Looking at Figure 14, there is a first latency between the time the event occurred (T0) till the
time an image has been acquired and sent to the processing CPU (T1) where it can receive a
timestamp. Such time includes the exposure time of the image sensor and the transfer time
of the image from the camera to the CPU. It is usually related to the sampling frequency of
the device, for example on a 250Hz ET device, it can take 4-5ms to capture and transfer an
image.

After that, the image is to be processed by the CPU, this time will also be dependent on a
number of factors including the speed of the CPU, the size of the image, the complexity of
the processing algorithms etc. This time is typically in the order of magnitude of a few
milliseconds. Finally, the data will be made available through the API (T2) and in case of
synchronization middleware such as LSL, it will receive a timestamp which will there be
assumed to be the time when the event happened (T0) but in reality will have added the
internal latency (T2 - To), which in many cases can be 10ms or more. Some ET systems will
provide through their API for each sample the timestamp (T1) when the corresponding image
was received; this reduces the hidden latency but does not completely eliminate it.

An additional problem to consider when timestamps are being generated by a PC is
timestamp jitter. Even if a sensor acquisition process is driven by an isochronous clock
generation (which is also just an abstraction, as we know that all clock generators will drift
due to environmental conditions, in particular temperature), the delivery and timestamping
of samples on a PC will also be affected by a number of events of non-deterministic nature
(unless a real-time Operating System is being used) dependent on temporary load of certain
computer’s resources such as the CPU, the bus used to transfer the data into memory, the
main memory itself, etc.

The result is “noise” on the timestamps which is just being added by the PC itself and which
has to be taken into consideration; if it is known however that the sample source is
(approximately) isochronous and that the delta between two successive timestamps is fixed;
it is then possible offline to filter the timestamps to correct or reduce jitter, if the application
requires it.

Finally, camera based sensors used in real-time applications can occasionally drop samples.
This can happen again due to temporary unavailability of PC resources, so that if an image
frame is not delivered or processed on time (i.e. within the allocated time interval which is
determined by the device’s frame rate) then the corresponding data sample may be dropped
to prevent the chain of delays in the subsequent samples.

3.5.5 Synchronization using LSL

LSL provides built-in software synchronization using a protocol which is similar to the NTP
algorithm. For each sample streamed using an LSL Steam Outlet, it is possible to specify an
own timestamp, if the user wants to use its own synchronization means, otherwise LSL will
provide automatically a timestamp.

In case of internal sensor latencies as explained in Section 3.5.4 , if they’re known it is
possible to specify them in a header which is attached to the stream Outlet [21]:

<desc>

<synchronization> # information about synchronization requirements

 D4.1 – V0.6

Page 32

<offset_mean> # mean offset (seconds). This value should be

subtracted from XDF timestamps before comparing streams. For local LSL

generated events, this value is defined to be zero.

<offset_rms> # root-mean-square offset (seconds). Note that it

is very rare for offset distributions to be Gaussian.

<offset_median> # median offset (seconds).

<offset_5_centile> # 95% of offsets are greater than this value

(seconds)

<offset_95_centile> # 95% of offsets are less than this value

(seconds)

<can_drop_samples> # whether the stream can have dropped samples

(true/false). Typically true for video cameras and video displays and

false otherwise.

</synchronization>

</desc>

In particular, the offset_mean parameter is subtracted by each samples’ timestamp. If
the data is being recorded offline using the provided XDF format, LSL offers an XDF importer
which then takes care of correcting for clock offset, missing frames (if the stream has been
marked as can_drop_samples), resampling and jitter correction. If however the
streams are being used online as in our case, it has to be considered that the timestamps of
a given stream are delivered without adjustments, that is, using the clock of the computer
that originally generated them.

LSL provides a very simple way to correct for the clock offset between the sender PC and the
one which is receiving the data. Supposing that the receiver application has created a stream

Inlet object for a certain sensor data stream (let’s call this eegInlet), the current time
offset between the sender PC’s and the receiver PC’s clocks, is automatically determined by
LSL using an NTP-like algorithm, and is returned by simply calling the function:

// the time_correction() function returns the current clock offset for a

// given stream

double eegStreamClockOffset = eegInlet.time_correction();

It is then sufficient to add this offset to the received samples timestamps to have them
synchronized with the receiver PC’s clock, with one caveat. As already mentioned, clock
offsets do not stay constant as the physical clocks tend to drift apart. It is then necessary to
periodically call the time_correction() function for each stream to keep the offset up
to date.

Even though the preferred setup of a single PC (see Section 2.3) minimizes the chance of
having de-synchronized signals, it was deemed important for the MAMEM architecture to
cover all different types of platform configuration and accommodate for network-oriented
setups.

3.6 Event Generation Interface

As already mentioned in the introduction, MAMEM’s software architecture consists of
various different layers and modules. However, in order for these layers to operate
harmonically it is important to have a joint awareness of the events that are taking place in
either of the different layers. For instance, the applications layer needs to know that the EEG
and ET signals have become available to the system so as to change the interface for regular
mode to MAMEM mode (i.e. interface operated through eyes and mind). Similarly, in a BCI

 D4.1 – V0.6

Page 33

where the mental commands are facilitated by the steady-state visual evoked potentials, the
Interaction SDK needs to know that the front-end application is currently in the state of
presenting the different flickering boxes to the user and awaits the classification response
from the system. Knowing this, the Interaction SDK could start the classification processing
algorithm, which is typically in idle state to save computational resources. These are just two
examples of the abstract requirement for communication across layers that can be
expressed as follows:

“When a certain event takes place in one of the layers the other layers need to know about
it so as to adopt their functionality accordingly”

Going back to our middleware there are two types of events that need to be handled by this
layers:

a) The first has to do with the fact that that a signal stream (i.e. EEG, ET or GSR) is currently
served by the middleware and can be acquired by the other layers of the architecture. In
order to communicate this fact the middleware generates an event that indicates the
existence of a signal stream in the local network that can be resolved by the other layers
to obtain the signal stream (see Section 3.6.1

b) The second has to do with the need for the middleware to know the start and end point
of an event that is taking place in another layer (usually the applications layer), so as to
mark the segments of the signal streams that correspond to this event. In order to
receive and transmit this kind of markers the middleware relies on the string stream
event generation interface that is able to communicate strings (e.g. SSVEP-Start or
SSVEP-End) at irregular sampling rate (as opposed to the signal streams where the
sampling rate should be regular). See Section 3.6.2 for the description of this interface.

In the following we provide more details about the aforementioned interafaces.

3.6.1 Signal Stream Event Generation Interface

Here we are going to present how an event generation algorithm object can access the
sensor data provided by the LSL network. As in Section 3.3 we introduced stream Outlets to
send data using LSL, the dual concept on the receiving side are stream Inlets (see Section 3.3
.

When a stream outlet is being served in the local network through LSL (see Section 3.3 a
corresponding event is generated with the intention to allow this outlet to be discovered by
the other modules.

Then, an application which wants to use sensor data being streamed on the LSL network, has
to first retrieve what are the currently available streams. If we want to find out a list of all
streams currently active on a network, LSL provides the so-called Resolve Functions (see
Section 3.3 , which return a vector of stream_info objects:

// discover all streams on the network

vector<lsl::stream_info> results = lsl::resolve_streams();

A stream_inlet is then created by passing a stream_info object to its constructor:

// Create a stream inlet associated with the first stream descriptor

// received

lsl::stream_inlet inlet(results[0]);

 D4.1 – V0.6

Page 34

Data can then be pulled by the inlet sample by sample:

while (true) {

// get an 8 channel sample, each channel represented by a float

 float sample[8];

 double ts = inlet.pull_sample(sample,8);

// the returned ‘ts’ is the sample timestamp in the local clock

}

It is also possible to search (or “resolve”) for streams whose descriptor matches specific
properties, so for example if a stream is annotated (at the time of generating the outlet –
see Section 3.3) to be an EEG stream, or using a specific name, or manufacturer, etc.:

// discover all EEG streams on the network

vector<lsl::stream_info> eegInfos = lsl::resolve_stream(“type”,”EEG”);

LSL provides an extensive documentation in its Wiki [22].

3.6.2 String Steam Event Generation Interface

Apart from the events that relate to the availability of a stream signal, LSL supports also the
functionality of sending and receiving streams of strings at irregular sampling rates. As
already mentioned, these strings could serve as markers indicating the start/end point of an
event that is taking place in another layer (e.g. the applications layer). Below we provide the
functions supported by LSL for sending and receiving a string stream.

Sending a string stream:

The following example offers a 1-channel stream which contains strings. The stream has the
"Marker" content type and irregular rate. First we need declare the type of markers:

char *markertypes[] = {"Test", "Blah", "Marker", "XXX", "Testtest",

"Test-1-2-3"};

Then, we need to declare a new streaminfo (name: "MyEventStream", content type:
"Markers", 1 channel, irregular rate:

info =

lsl_create_streaminfo("MyEventStream","Markers",1,LSL_IRREGULAR_RATE,cft

_string,"myuniquesourceid23443");

Subsequently, we need to make a new outlet (chunking: default, buffering: 360k markers):

outlet = lsl_create_outlet(info,0,360);

Finally, we can send random marker streams with the following code:

while(1) {

 /* wait for a random period of time */

 endtime = ((double)clock())/CLOCKS_PER_SEC +

(rand()%1000)/1000.0;

 while (((double)clock())/CLOCKS_PER_SEC < endtime);

 /* and choose the marker to send */

 mrk = markertypes[rand() %

(sizeof(markertypes)/sizeof(markertypes[0]))];

 printf("now sending: %s\n",mrk);

 /* now send it (note the &, since this function takes an array

of char*) */

 lsl_push_sample_str(outlet,&mrk);

 D4.1 – V0.6

Page 35

 }

Receiving a string stream:

In order to receive the stream, we first need to resolve the stream of interest:

/* result array: info, array capacity: 1 element, type shall be EEG,

resolve at least 1 stream, wait forever if necessary */

lsl_resolve_byprop(&info,1, "type","EEG", 1, LSL_FOREVER);

Make an inlet to read data from the stream:

/* buffer max. 300 seconds of data, no preference regarding chunking,

automatic recovery enabled */

inlet = lsl_create_inlet(info, 300, LSL_NO_PREFERENCE, 1);

Subscribe to the stream:

/* automatically done by push, but a nice way of checking early on that

we can connect successfully */

lsl_open_stream(inlet,LSL_FOREVER,&errcode);

Display the data obtained from the stream:

for(t=0;t<100000000;t++) {

 /* get the next sample form the inlet (read into cursample, 8

values, wait forever if necessary) and return the timestamp if we got

something */

 timestamp =

lsl_pull_sample_f(inlet,cursample,8,LSL_FOREVER,&errcode);

 /* print the data */

 for (k=0; k<8; ++k)

 printf("\t%.2f",cursample[k]);

 printf("\n");

}

More details can be found at [22].

 D4.1 – V0.6

Page 36

4 Interaction SDK

As mentioned in the introduction, the requirements that have been set in the Description of
Actions [5] to motivate our decision on the Interaction SDK are: a) transparent, in terms of
the communication with the middleware, b) rich, in terms of the supported methods and
processes, c) extendable, in terms of adding more methods and processes, and d) easy to
access, from the front-end applications. In the following we compare some of the most
promising open source frameworks for developing BCI applications.

4.1 Industry Standards

In comparing the existing frameworks, our intention has been to evaluate the
appropriateness of each solution based on the aforementioned criteria. Table 6 summarizes
the results of this comparison, as inferred from [37]:

Platform
Transparency with

middleware
Richness in

functionalities
Easy of use

Modularity/
Extensibility

On-line
processing

BioSig
[38]

No real-time hardware
or computation

support

Large amount of
functionalities for
statistic and time-

series analysis

Not very user-
friendly (No

GUI)

Complicate code,
not very modular
(MATLAB toolbox)

Offline
analysis

only

BCI2000
[39]

Supports a wide range
of acquisition

hardware (~19
systems)

Lack of advanced
signal and

machine learning
algorithms

Fairly easy to
use (solid

documentation,
big community)

Fairly modular
(programmed in

C++)

Supports
real-time

acquisition
and

analysis

OpenViBE
[10]

Supports a broad
range of acquisition

hardware(~15
systems),

communicates with
LSL.

Focus on basic
signal processing
building blocks

(weaker support
for complex

information flows)

Very user-
friendly design
(allows visual
programming
and dataflow

programming)

Implemented in
modular C++ but
relatively hard to

extent due to
complex

framework

Supports
real-time

acquisition
and

analysis

BCILAB
[40]

Relatively little native
support for acquisition
systems (~5), though it

can tie-up into
middleware

frameworks like LSL.

Largest collection
of BCI algorithms

from signals
processing and

machine learning

Fairly easy to
use (by

following the
provided

documentation)

MATLAB-based,
complex internal

framework,
requires expertise

to extend.

Supports
real-time

acquisition
and

analysis

Table 6: Comparing some of the most prominent open source frameworks for making BCI
applications. (source: [37])

Apart from the aforementioned frameworks that have been considered as the most
prominent, the full landscape of BCI frameworks should also refer to the following:

 FieldTrip: Popular MEG/EEG toolbox for online features

 xBCI: New C++ framework focused on online operation, GUI-centric, cross platform.

 BF++: Mature BCI framework providing offline analysis and modelling with UML and
XML.

 D4.1 – V0.6

Page 37

 TOBI: Protocol suite for BCI interoperability and data acquisition

 PyFF: Python-based BCI stimulus presentation system.

 BBCI: In-house, very comprehensive MATLAB-based system

 BCI++: Relatively new C++ system, focused on human-computer interaction and virtual
reality (still in a rather immature state).

In deciding about the most appropriate framework to base the Interaction SDK of MAMEM
we have only considered the frameworks presented in Table 6, since they are considered as
the most mature and well-maintained. Despite its extensive set of methods for statistics and
time-series analysis, BioSig was considered inappropriate for our purposes dues to its lack
for making transparent the communication with the underlying middleware (or hardware),
as well as its lack of support for real-time analysis. On the other hand, our decision to not
follow the option of BCI2000 was primarily driven by the lack of support for advanced signal
processing algorithms, as well as it’s moderate performance on user-friendliness. Finally, in
selecting between BCILAB and OpenViBE, both of them are able to communicate with our
middleware (i.e. LSL), as well as to support real-time acquisition and analysis. In addition,
both of them are rather hard to extent, while BCILAB appears to be much richer in terms of
the already implemented functionalities. However, our decision to favour OpenViBE for
becoming the basis of MAMEM interaction SDK was its ability to support visual and dataflow
programming in a very user-friendly fashion, which makes is accessible even to non-experts
(e.g. clinicians). Recalling that one of MAMEM’s main objectives has been to offer a
framework for allowing developers and interface designers to build their own multi-modal
interaction applications, the philosophy behind OpenViBE was considered to more
consistently reflect the rationale of MAMEM. Finally, we should also mention that OpenViBE
is written in C++ (which is in accordance of what has been considered as best practice in
Section 2.2 runs on both Windows and Linux and it can smoothly communicate with LSL.

4.2 OpenViBE

OpenViBE [41] has been implemented with the purpose of designing, testing and using
brain-computer interfaces. It supports real-time processing of brain signal and it can be used
to acquire, filter, process, classify and visualize brain signals in real time. OpenViBE is free
and open source and works on Windows and Linux operating systems.

The main application fields of OpenViBE are medical (assistance to disabled people, real-
time biofeedback, neurofeedback, real-time diagnosis), multimedia (virtual reality, video
games), robotics and all other application fields related to brain-computer interfaces and
real-time neurosciences. The most interesting characteristic of OpenViBE is that it can be
used either by programmers, or from people not familiar with programming, such as medical
doctors, or clinicians. This feature makes OpenViBE particularly attractive for developing BCI
applications.

In the following, we provide more details about OpenViBE in terms of the offered processes
and features, the list of supported hardware devices, as well as the interfaces that are used
to communicate with sensor devices or any other software that can serve as middleware (i.e.
LSL).

 D4.1 – V0.6

Page 38

4.3 Visual programming, processing and visualization module

4.3.1 Visual programming

In the following we provide a short description of the basic concepts behind OpenViBE as
provided in [42]. The purpose of OpenViBE is to get data from the acquisition device through
the Acquisition Server and then send it to one or more Acquisition Clients. In this description
we will consider the Acquisition Client to be the OpenViBE Designer (i.e. the graphical user
interface offered by the framework to support visual and dataflow programming). The
Acquisition Server and the clients (Designers) can be either on the same machine or different
machines on the same network, or any combination of these. The diagram of Figure 15
explains these possibilities:

Figure 15: Diagram explaining the network topology of OpenViBE

The first step that needs to be performed in order to use OpenViBE is to run and setup the
OpenViBE Acquisition Server. Upon launching this server the graphical window of Figure 16
allows you to setup the server. There are three main settings that need to be configured for
setting-up the Acquisition server: a) Driver, which corresponds to the software module that
takes care of the communication between OpenViBE and the sensor device, or the
middleware (see Section 4.4), b) Connection port, which specifies the port that will be used
by the Acquisition Server to stream the generated signal, and c) Sample count per sent block,
which determines the number of samples composing a chunk received from the stream.
Further configuration options can be provided through the “Driver Properties” and
“Preferences”.

Figure 16: OpenViBE Acquisition Server Configuration Window

 D4.1 – V0.6

Page 39

The second step is running the OpenViBE designer. Upon launching the designer the
graphical window of Figure 17 appears. There are two main elements in the Designer’s
window: a) the scenario window on the left, and b) the box algorithm list on the right. The
scenario window is used to create the signal processing chains assembled from the
processing boxes that are picked from the list on the right.

Figure 17: OpenViBE designer interface under Windows 7

The most fundamental of the available boxes is the Acquisition Client. The role of the
Acquisition Client is to get the data from Acquisition Server and pass it on to the rest of the
processing chain. There are two main configuration options that need to be set for the
Acquisition Client (as shown in Figure 18): a) The hostname of the Acquisition server, and b)
the port that is used by the Acquisition Sever to stream the generated signal.

 D4.1 – V0.6

Page 40

Figure 18: Configuration window for the Acquisition client

By properly configuring the Acquisition Client the signal coming from the sensor device (or
though the middleware) is now available for further processing. In order to do this, we can
pick one of the processing boxes that lie on the right panel of the OpenViBE Designer. There
is already a rather complete list of methods (see Section 4.3.2) that can be used for various
purposes. The most trivial of these methods is to simply display the signal. In order to do
this, the Signal Display box should be dragged into the scenario. This box is able to display
the signal it gets on the input. Thus, if we connect the Acquisition Client box with the signal
display box, as show in Figure 19, we have an example scenario that takes the signal from
the sensor device and displays its waveform in the OpenViBE designer. In order to do this,
we need to go back in the Acquisition Server and click on the Connect and Play buttons, so as
to start sending the data over the network and also press the Play button in the designer in
order to get the signal displayed.

Figure 19: Minimal scenario of having a signal acquired by the device and displayed by the
designer.

4.3.2 Processing boxes

As we have seen in the OpenViBE Designer, the processing scenarios are made of boxes that
are dragged and dropped in the scenario panel. These boxes are used to implement all the
different functionalities offered by the framework, ranging from signal acquisition and
network Input/Output operations, all the way to signal processing, classification and
visualization. Indeed, Table 7 presents the full list of processing boxes as provided in [43].

Acquisition and network IO Acquisition client
LSL Export
LSL Export (Gipsa)
OSC Controller
TCP Writer

Classification Classifier processor
Classifier trainer
Voting Classifier

Data generation Channel units generator
Noise generator
Sinus oscillator
Time signal

Evaluation General statistics generator

 D4.1 – V0.6

Page 41

Classification

 Classifier Accuracy Measure

 Confusion Matrix

 Kappa coefficient

 ROC curve

Feature extraction Feature aggregator

File reading and writing SharedMemoryWriter
Signal Concatenation
BCI2000
Brainamp
CSV
EDF
GDF
OpenViBE

 Electrode localisation file reader

 Generic stream reader

 Generic stream writer

Scripting Lua Stimulator
Python scripting

Signal processing Averaging:
 Epoch average
 Signal average

Basic:
 AutoRegressive Coefficients
 Channel Rename
 Channel Selector
 Crop
 Downsampling
 Epoch variance
 Hilbert Transform
 Identity
 Matrix Transpose
 Min/Max detection
 Quadratic Form
 Reference Channel
 Signal Decimation
 Signal Differential/Integral
 Simple DSP
 Stream Synchronization

Connectivity:
 Connectivity Measure

Denoising:
 EOG Denoising
 EOG Denoising Calibration

Epoching :

 D4.1 – V0.6

Page 42

 Stimulation based epoching
 Time based epoching

Filtering:
 CSP Spatial Filter Trainer
 Common Average Reference
 Modifiable Temporal filter
 Regularized CSP Trainer
 Spatial Filter
 Temporal filter
 xDAWN Spatial Filter Trainer

Independent component analysis:
 Independent component analysis (FastICA)

Spectral analysis:
 Frequency Band Selector
 IFFT
 Spectral analysis (FFT)
 Spectrum Average

Statistics :
 Univariate Statistics

Wavelets:
 Discrete Wavelet Transform
 Inverse DWT

Windowing:
 Windowing functions

Stimulation Clock stimulator
 Keyboard stimulator
 P300 Identifier Stimulator
 P300 Speller Stimulator
 Player Controller
 Run Command
 Sign Change Detector
 Sound Player
 Timeout

Streaming Signal Merger
 Stimulation Voter
 Stimulation multiplexer
 Stream Switch
 Streamed matrix multiplexer

Visualisation Basic:
 Level measure
 Matrix Display
 Power spectrum display
 Signal display
 Time-frequency map display

Presentation:
 Display cue image

 D4.1 – V0.6

Page 43

 ERP plot
 Graz visualization
 P300 Identifier Card Visualisation
 P300 Magic Card Visualisation
 P300 Speller Visualisation

Topography:
 2D topographic map
 3D topographic map

Volume:
 Voxel display

Table 7: List of processing methods available in OpenViBE (source: [43])

It is evident from Table 7 that OpenViBE covers the full spectrum of methods that are
necessary to implement a BCI application. Apart from the typical modules of signal
processing, feature extraction and classification, it also offers functionalities related to
Stimulation and Visualization. Based on the above, our intention with MAMEM Interaction
SDK is to make full use of what has been already implemented in OpenViBE and extent when
necessary with MAMEM-specific functionalities.

4.3.3 Extending OpenViBE with new Boxes

As already mentioned, our goal within MAMEM is to rely on what has been already
implemented in OpenViBE and extent when necessary with MAMEM-specific processes and
methods. The creators of OpenViBE have made available extensive documentation on how
to extent their framework with new boxes [44], how to ensure the communication between
the different boxes through messages [45] and how to make these boxes available in the
OpenViBE Designer [46]. Our intention is to rely on this documentation for incorporating the
MAMEM-specific functionalities into the OpenViBE framework.

4.4 Supported acquisition devices

Based on its creators, OpenViBE supports over 30 acquisition devices (report up to Oct.
2015) [47]. By using the interface of the Acquisition Server we can switch between any of the
supported EEG devices without the need to do any modification in the processing chain.
Table 8 presents the full list of supported hardware devices, as provided by the creators of
the platform in [47].

Manufacturer Amplifier Driver Name OS

ANT

Neuro ASALAB EEG / ERP
amplifier

Either MindMedia Nexus32B or
TMSi drivers

Other TMSi derived devices

Either MindMedia Nexus32B or
TMSi drivers

ANT/EEmagine EEGO EEGO

Biosemi Active Two MkI & MkII Biosemi Active Two

 D4.1 – V0.6

Page 44

Manufacturer Amplifier Driver Name OS

BrainMaster

Atlantis

Brainmaster Atlantis and
Discovery

Discovery

Brainmaster Atlantis and
Discovery

Brain Products

V-Amp Brain Products V-Amp

actiCHamp Brain Products actiCHamp

QuickAmp

Either MindMedia Nexus32B or
TMSi drivers

BrainAmp Series Brain Products BrainAmp Series

All

Brain Products BrainAmp
Standard (through BrainVision
Recorder)

Cognionics All? Cognionics

CTF/VSM MEG CTF/VSM MEG

EGI Net Amps 300

EGI Net Amps 300 (through
AmpServer)

Emotiv

EPOC (Research Edition / raw
EEG versions ONLY)

Emotiv EPOC

gTec

gUSBamp g.Tec gUSBamp Gipsa-lab

gMobilab+

gTec gMOBIlab+ (mutually
exclusive with gUSBAmp)

LabStreamingLayer

Any LSL source with
compatible streams

LabStreamingLayer (LSL)

mBrainTrain MBT Smarting mBrainTrain Smarting

MCS/MKS NVX MCSNVX

Micromed SD LTM

Micromed SD LTM (through
SystemPlus Evolution)

MindMedia NeXus32 MindMedia Nexus32B

 D4.1 – V0.6

Page 45

Manufacturer Amplifier Driver Name OS

Mitsar EEG 202 Mitsar EEG 202A

Neuroelectrics Enobio3G Enobio3G

Neurosky

MindSet NeuroSky MindSet

MindWave NeuroSky MindSet

OpenBCI OpenBCI board OpenBCI

OpenEEG

MonolithEEG OpenEEG Modular EEG P2

ModularEEG OpenEEG Modular EEG P2

TMSi

Any TMSI amplifiers including
Refa, Porti and Mobita, with
up-to-date API+bios

TMSi amplifiers

Porti32

Either MindMedia Nexus32B or
TMSi Refa32B drivers

Refa32

Either MindMedia Nexus32B or
TMSi Refa32B drivers

Other devices

Either MindMedia Nexus32B or
TMSi Refa32B drivers

Table 8: Full list of hardware devices supported by OpenViBE (source [47])

We can see that all major EEG manufactures appear in the list. However, what is more
important to notice is the support provided for the LabStreamingLayer. This is essentially the
most important element of OpenViBE since MAMEM architecture (see Section 7) foresees
that all bio-signals will arrive to the Interaction SDK through the LabStreamingLayer.
However, the fact that the chosen framework is able to directly support a wide range of EEG
manufactures, automatically increases the impact of the SDK extensions that will be
implemented as part of MAMEM.

4.5 Discussion

One interesting remark with respect to the eligibility of OpenViBE for serving as the
Interaction SDK of MAMEM is the fact that it has been mostly designed and used for
processing EEG signals (and not other types of bio-signals). Thus, the built-in support for the
ET and GSR signals that are envisaged in MAMEM is very limited. Despite this fact we have
still considered that OpenViBE is the best option for our Interaction SDK, due to the

 D4.1 – V0.6

Page 46

following reasons. The transparent communication of OpenViBE with LSL ensures that it will
be straightforward for us to obtain all different types of signals (i.e. EEG, ET, GSR and Event
Markers) within the OpenViBE environments in a synchronized mode. Moreover, the
partners of MAMEM consortium committed in extending the framework with the processing
boxes that will be necessary to implement the envisaged BCI interfaces. Thus, the choice of
OpenViBE as the back-bone of MAMEM’s Interaction SDK was deemed the most prominent
and resource-effective option for the purposes of our project.

 D4.1 – V0.6

Page 47

5 Application Layer

5.1 Generally established interaction modalities – Eye Tracking

There are different techniques in the literature for using the eye gaze for interacting with a
PC, however there are no common framework to interact with eye tracking based interfaces
in the best manner. Generally the interaction with an eye gaze interface can be made in a
command or non-command based modes [30]. In the command based interface, gaze is
used for object selection in the same way as with traditional pointing devices such as mouse.
In the non-command interface the user’s gaze is recorded and examined to discover the
user’s attention.

There are certain difficulties with using eye movements as commands in a human-computer
dialogue. The behavior of the eye makes it unsuitable to replace manual input devices
directly with an eye tracker. One characteristic of eye movements is that they are both
controlled consciously and affected by external events. When using eyes to interact with a
computer, the eyes are always “on” hence the input is continuous. However the manual
input devices are active when the user desires them to be. These characteristics make it very
difficult for the computer to interpret the user’s intentions only from gaze focus. All gaze
fixations made by the user cannot be regarded as commands. In the research community
this is called the Midas touch problem. There should be methods for the user to confirm
that a command should be executed or not. To avoid Midas touch problem it is possible to
use techniques like: Dwell time, Winks, Extra input device. With dwell time, a selection is
confirmed after the user has looked at an object a certain amount of time. When using dwell
time it is important that the response time is sufficient. If the dwell time is too short, wrong
selection may be made and if it is too long, the user gets frustrated. If a wink is used the
interface must know if it is intentional or not. A wink with one eye is used to make it possible
to separate the intentional blinks from the unintentional, which always are made
simultaneous with both eyes. When the user looks at an object on the screen, the object
becomes highlighted. No action is performed until the user winks with one eye – then a
command is executed. Several winks can be joined to make a special command. For example
a wink with left eye followed by a wink with right eye can imply “page up” in a word
processor. The use of a combination of eye and hand for controlling a user interface may be
the best option in most situations. This makes the use of an extra input device necessary and
thus the technique is not an option in a purely gaze based interface.

An important aspect of interaction is when the screen interface should include a cursor that
follows the user’s gaze focus. If calibration, accuracy and speed of the eye tracker would be
perfect, no feedback would be needed, since the user knows where he is looking. Cursor is a
way of feedback; it shows the user where his gaze focus is, according to the computers
interpretations. But there are also disadvantages with the use of a cursor in an eye gaze
interface. If there is a flaw in the calibration, the cursor will be shown displaced from the
user’s real gaze focus. The user’s gaze will then be drawn to the cursor, which becomes
further displaced. An alternative to the use of a cursor is to highlight the items that the user
is focusing on.

Another popular modality is gaze added interface when the eye tracker is used to
complement the manual input devices like mouse or keyboard. In this kind of interface, the

 D4.1 – V0.6

Page 48

problems with gaze accuracy and Midas touch can be solved in different ways. A command
can be confirmed by pressing a button. A button on the keyboard or one of the mouse-
buttons, called “the gaze-button”, can be used for this purpose. Jacob et al. proposed an
approach where both dwell time and a gaze-button works in parallel [27]. The user can then
choose the interaction technique that he prefers. If interaction with dwell time is regarded
as too slow, a command can instead be executed by pressing the gaze-button. Zhai et al. [28]
considered that the human visual perception channel should not be loaded with a motor
control task, like selecting or moving an object. To solve this problem they developed a
method MAGIC pointing – Manual And Gaze Input Cascaded pointing. The technique is
based on the idea that pointing and selecting should be manual tasks; while at the same
time make use of the benefits with eye control. The speed of the eye makes it appropriate to
use for fast movement of the pointer. In this interface the pointer is “warped” to where the
user fixates his gaze. If the fixation is close to an object, fine adjustment is made with a
manual input device.

Using these interaction methods, several applications have been developed in the eye gaze
community, since the interest for applying eye tracking methods grows with technological
progress and increment of performance and accessibility [29]. The devices are becoming
sufficiently reliable and affordable to consider their use in real HCI. Many studies are focused
on appropriate interaction techniques that incorporate eye movements into the HCI in a
convenient and natural way. In the following we discuss some popular usability application
scenarios of eye tracking based interaction.

5.1.1 Eye tracking in assistive technology

Assistive technology encourages greater independence for people with disabilities by
enabling them to perform tasks that they were formerly unable to accomplish. Taking into
account that most of the neuro-disabled patients can move their eyes, this can be useful for
communication. In a gaze based interface the user does not need to use his hands to interact
with the computer. The only input device used is an eye tracker and solely the user’s eyes
control the GUI. This kind of interface is suitable for people with physical disability that
prevents them from interacting with their hands. It is also a good option if the space
available does not allow a keyboard or mouse to be used. Instead of using a keyboard the
user can write by using an eye controlled graphical keyboard displayed on the screen.

Eye tracking can be used together with a computer to select a word from a menu. This
device should be used by patient for a face to face conversation or a remote message sent
via communication network. Figure 20 presents an example of such a system [24], where the
keywords are selected by patient using eye tracking technique. A camera mouse can be used
to move a cursor on a computer screen and to browse a menu for suggestive pictogram
selection [25]. The keywords collection is organized as a tree structure having wide and short
topology. The breadth first traversal method is suitable for keyword searching and for an
easy and fast comeback to the upper level “Go back” images are placed at the right and left
limits. An updated version of this communication system uses an eye tracking mouse (ETM)
system using video glasses and a robust eye-tracking algorithm [26]. The validation of the
usability and reliability of the proposed system was done by experimental procedure
involving voluntaries and patients in a neurologic emergency clinic.

 D4.1 – V0.6

Page 49

Figure 20: System communication for people with disabilities (Asistsys)

In the Eye gaze systems such as PRC Accent [68], myGaze [70] with Grid 2 software [63],
Tobii Dynavox [64], a user can operate the system by looking at rectangular keys or cells that
are displayed on the control screen. Through visual activation, the array of menu keys and
exit keys allow the user to navigate the software independently. Through this eye tracking
technology, users can operate lights and appliances remotely, control infrared devices such
as televisions and stereos. For more sophisticated computer access there are other systems
from, among others, SensoMotoric Instruments [69], LC Technologies [67], and Eye Tech
[66]. However, following Medicare guidelines, people enrolled in hospice or living at an
assisted living facility are sometimes not eligible for communication devices. For those going
down the do-it-yourself route, there are new cost effective devices such as The Eye Tribe
[71] which potentially enables eye control on some mobile devices. The Eye Tribe tracker is
currently a development unit intended for developers only and cannot be used
commercially; however it is supported unofficially by some open source software [72]. The
EyeWriter Project [73] is a low cost, open source eye-tracking system allows patients to draw
on a tablet using just their eyes. Vision Key [74] is one of the latest eye controlled
communication that enables users to type and talk with their eyes. The system gives the
users a voice by enabling them to control a speech synthesizer in the Vision Key unit or on
the computer by looking at the screen. Users look at a specific word, letter or character on
the chart in front of their eye and ‘type’ by holding their gaze until a selection is confirmed
by a green highlight and a beep.

5.1.2 Eye tracking in e-learning

In recent years, several technologies like collaborative software, cloud computing,
screencasting, virtual classroom together with different devices (e.g. mobile devices,
webcams, audio/video systems) were used to facilitate e-learning development and to
increase the effectiveness and accessibility of e-learning platforms. Various studies have
revealed that eye tracking methods could actually improve the functionality and usability of
e-learning systems: Eye Tracking Analysis in the Evaluation of E-Learning Systems, project,
AdeLE project or ACM studies [23].

In the e-learning platform it is possible to capture learner behavior in real-time using eye

 D4.1 – V0.6

Page 50

tracking methods. The data collected via eye-tracking devices indicates the person's interest
level and focus of attention. From eye position tracking and indirect measures, such as
fixation numbers and duration, gaze position, and blink rate, it is possible to draw
information about the user's level of attention, stress, relaxation, problem solving,
successfulness in learning, tiredness or emotions. It was revealed that when using eye
tracking in e-learning, the learner pays more attention to the learning system and also tends
to have a higher level of motivation [23].

5.1.3 Eye tracking in gaming

Several commercial games have already explored the concept of gaze based interaction for
better user satisfaction [31]. The most obvious means of eye based interaction is in pointing
tasks, where the object the user is looking at is considered to be selected. For example, in
the first-person shooter genre, where the field of view of the player’s avatar is explicitly
presented to the user. Other games build on the way humans use eye movements to
manage social situations as a means for an avatar to communicate with the player. For
example, In “The Legend of Zelda: The Wind Waker”, the player’s avatar indicates that a
nearby object might be interesting by looking at it [32]. Additionally, some games require
the player to explicitly control an avatar’s gaze direction. For example, in Figure 21 user’s
gaze controls his butterfly avatar, moving over a meadow towards the horizon gathering
flowers. The game is developed at University of Koblenz [82], and explores three different
gaze control mechanisms. The first approach is a direct interpretation of the gaze
coordinates as position for the avatar. The second one is a grid-control variation, with
predefined positions for the avatar. The third approach is a mechanism that supports the
players by automatically directing the avatar to a position where it will collide with the
flower.

Eye movements have also been proposed as a modality for pointing within virtual
environments. These systems typically correlate the user's gaze into a vector defined by
virtual world coordinates. Typically, 2D gaze coordinates are retrieved from the eye tracker
and then projected into the world using simple ray casting. Tanriverdi and Jacob proposed
that eye movements could be used as an active pointing device for 3D object selection in
virtual environments presented in a head-mounted display [33]. The eye was tracked in 2D
in screen coordinates in the HMD. Ray casting was used to select the nearest object
rendered to the pixel residing at the gaze coordinate, and a dwell time was used to avoid the
Midas touch effect.

Figure 21: The avatar is controlled by the player’s eyes (Schaugenau)

 D4.1 – V0.6

Page 51

5.2 Generally established interaction modalities – EEG

5.2.1 BCI Systems and EEG-based interaction modalities

A general description of a BCI system is provided in Figure 22. BCI is a tool that gives us the
ability to communicate with the external world without using peripheral nerves and muscles.
A BCI system translates the recorded electric brain activity into output commands. To
achieve that, a number of steps are performed, as indicated in Figure 22. The input to a BCI
system is the electrophysiological brain activity, while the output is the device commands.
The brain activity is recorded through the use of an EEG system. After that, the analysis of
EEG signals is performed in order to extract the intended commands of the user.

Figure 22: A general description of a BCI system (reprinted from [48])

A BCI system can be characterized in a number of ways based on the different modalities of
physiological measurement (electroencephalography (EEG) [57], [58]; electrocorticography
(ECoG) [59]; magneto-encephalography (MEG); magnetic resonance imaging (MRI) [60], [61];
near-infrared spectroscopy (fNIRS [62]), mental activation strategies (dependent versus
independent) and the degree of invasiveness. From the above modalities, the EEG signal is
the most used because of its noninvasiveness, its high time resolution, ease of acquisition,
and cost effectiveness as compared to other brain activity monitoring modalities.
Noninvasive electrophysiological sources for BCI control include event related
synchronization/desynchronization (ERS/ERD), visual evoked potentials (VEP), steady-state
visual evoked potentials (SSVEP), slow cortical potentials (SCP), P300 evoked potentials and
μ and β rhythms.

 D4.1 – V0.6

Page 52

5.2.2 BCI applications based on EEG

By relying on the aforementioned modalities, a number of BCI applications have been
proposed in the literature based on EEG signals. For instance, one type of applications
concerns the interfaces that have been developed for helping people with neuromuscular
disorders to type letters. The user concentrates on a flashing letter on the computer monitor
(see Figure 23). This creates an electrical change in the brain which is sent to the computer.
The computer program translates the brain signal to the letter that the subject was focusing
by exploiting the time information of the flashing letter and the electrical brain signal. This
brain signal is called P300 (P3) wave and it is an event related potential (ERP) component
elicited in the process of decision making [49]. This method has passed into market with
several companies selling related hardware & software such as the “Intendix Brain-computer
Interface” [50]. The same idea has also been used for painting. The user can paint by
focusing on a set of buttons and control is based on the visually evoked potentials
(VEP/P300) as in the previous case.

Figure 23: BCI application that allows the user to type by staring at flickering letters

Another typing middleware is the hex-o-speller that has been developed in the context of
the TOBI project [51]. In this case instead of flashing symbols the software relies on a
hierarchical class split and visual evoked potentials (focusing). The letters are separated in 6
classes that are shown in 6 hexagons. An arrow rotates from one hexagon to the other.
When the subject focuses in one hexagon the arrow expands towards this hexagon and the
selected class is split further until a single letter class is reached. Once the letter has been
selected the system goes back to the first screen containing the most probable set of letters,
and the user reiterates the cycle to select the following letter (see Figure 24).

 D4.1 – V0.6

Page 53

Figure 24: BCI application that allows typing based on Visual Evoked Potentials and a
hierarchical class split.

Brain computer interfaces have also been used for allowing the subject to use brain signals
for navigating in Virtual Reality (VR) worlds, as in the system developed by the Graz Brain
Computer Interface Lab [52]. The subject imagines that he is moving one of his/her limbs,
and this brain signal is translated to a command such as “right”, “left”, “button A”, etc (see
Figure 25). The same lab has also designed an interface for using the “Google Earth”
program. This is done by allowing the user to select the desired location using the
aforementioned technique of the “moving limbs”. The same technique has been used also
for audio processing by selecting the desired soundtrack and applying signal processing
filters.

Figure 25: BCI application that allows navigating in the virtual world.

5.3 Native and web browser applications

What becomes evident from Sections 5.1 and 5.2 is that BCI applications are evolving rapidly
and try to find their place in the market. What is also interesting is the variety of the end-

 D4.1 – V0.6

Page 54

user tools that are used to present the end-user applications. Indeed, the majority of the
existing BCIs run as native applications (implemented in Java, C++ or some other
programming language) that have been developed solely for this purpose. However, there
are also BCIs that run through a web browser or through some other generalized framework.
This tendency poses the requirement for MAMEM architecture to incorporate an additional
Layer that would make transparent the communication between the back-end of our system
(i.e. capturing and translating the signals) and the end-user applications. In addressing this
requirement, we have incorporated in our architecture the Application-Network Layer
(described in Section 6) that handles this communication through a client-server scheme
relying on network sockets. This layer adds a level of transparency between the back-end of
our system and the front-end applications, ensuring that MAMEM architecture will be able
to support all different types of end-user applications, independently on whether they run as
native applications, through a web browser or some other framework.

 D4.1 – V0.6

Page 55

6 Application-Networking Layer

The purpose of the Application-Networking Layer is to provide the means of communication
and data sharing between the Application Layer and the rest of the system. The
communication can be realized in many different ways but most of them rely on the
underlying operating system, or require the different processes to be running in the same
computer (see Table 9 for a comparison). Our intention is to have a flexible architecture and
for that reason we chose to use sockets because they overcome most of the limitations
described above.

Method Advantages Disadvantages

Communication
with Files/ Named
Pipes [84]

1. Doesn’t rely on the OS
2. Can be established over a

network

1. Slow because it utilizes hard disks.
2. Web applications cannot access

the file storage of a computer
directly; a web/file server must be
also implemented.

Shared
Memory/Memory-
mapped file [85]

1. Very fast.

1. Only native applications may
access the memory

2. Processes must be running on the
same computer.

System Signals [86] 1. Easy to implement 1. Only specific type of messages
may be passed (predefined by the
operating system)

2. Only native applications are
supported.

Sockets [87] 1. Do not rely on the OS
2. Communication may be

established by different
computers over the
network

3. Well supported by many
different programming
languages

1. Small latency on data transfer

Table 9: Methods for communication between different software processes.

Since we are planning to support both native and web applications, we need to use a socket
protocol that is supported by both platforms. There are many different protocols that can be
used for native applications, but it is not the same case for web applications. Web
applications are executed in a “sand box” mode inside a web browser for security reasons.
This means that they do not have access in the majority of the resources related with the
operating system, file storage or other APIs outside of the browser environment. The most
common way for a web application to connect with external applications is to use AJAX calls,
or the relatively new WebSocket protocol [53]. We chose to go with the WebSocket method
since it allows bi-directional communication between a web application and a server,
meaning that a web application can at the same time, send and receive messages to/from a
server. This is important for our architecture since it is expected that the system listens to

 D4.1 – V0.6

Page 56

the String Steam of Event Markers from the Application Layer and also broadcasts the HCI
Triggers back to Application Layer.

For implementing the WebSocket protocol we will utilize the Socket.IO [54] library, a library
written in Javascript that supports real-time and bidirectional communication between a
server and its clients. The main reason for choosing Socket.IO, even though it contradicts the
best practice of using C/C++ suggested in Section 2.2 , is the widespread use and maturity
featured by this library in implementing a client-server model. Indeed, the library is open-
source, hosted in GitHub [83] and includes many samples that will help on speeding up the
development. It is separated into a client-side and a server-side library for the node.js server.
Although it has been designed for communication between web browsers and web servers,
it can also be used with clients written in other languages such as C++ [55]. Finally, the
library is supported by the recent versions of all modern browsers, such as Google Chrome,
Internet Explorer, Firefox, Safari and Opera.

6.1 Socket.IO client-server model

In motivating our decision to consider a client-server model (as opposed to a peer-to-peer
model) for implementing the socket-based communication we have considered the
following. Although the Socket.IO library supports a peer-to-peer architecture [88] based on
WebRTC [89] which allows direct communication between the clients, the technology is not
mature enough yet and there is a high chance that we encounter problems such as browser
incompatibility. In addition, we estimate that the benefit of using a peer-to-peer
architecture (i.e. lower latency for passing the messages especially when streaming large
amount of data) does not compensate for the increased amount of complexity and
development effort. For this reason we chose to follow the more established client-server
model.

The server will be based on node.js [56], an open-source and cross-platform server-side
scripting runtime system. There is no limitation regarding what computer the server will be
run as long as the computer is part of the local network, however the best option is to setup
the server in a computer with low CPU usage from other sources. The role of the server is to
act as an intermediary between the clients and more specifically to: a) Receive messages
from clients, b) Interpret the messages according to the Messaging Protocol (see Section 6.2
and c) Send a response message to the appropriate client.

The clients will connect with the server when they are initialized and then will be able to
freely send or receive messages from the server. In our case the client applications include a
plugin for LabStreamingLayer (the Middleware), which is responsible for generating the
event marker string stream, a plugin for the InteractionSDK that sends the HCI triggers to the
Application Layer, and the applications themselves which mainly listen for the HCI triggers
and broadcast the event markers.

6.2 Messaging protocol

The messages that will be passed to and from the server will comply with a messaging
protocol common for all clients that are part of the architecture. It will be a JSON formatted
string which can be parsed in order to receive the data. When a client connects to the server
an identifier is assigned to it automatically. The server will preserve a list of all connected

 D4.1 – V0.6

Page 57

client IDs and will transmit it on demand when a client requests it. Each time a client wants
to send a message to another client it will have to fetch the list of the connected clients from
the server. A typical flow of communication can be seen in Figure 26.

Figure 26: Typical flow of communication using messages in a client-server model

When each client is initialized it sends a connect command to the server and receives its ID
from the server. Before sending a message to another client, the id of the receiver client
must be requested from the server. An example response containing the list of clients
connected to the server is the following.

{

 "connected_clients": [

 {

 "type": "webapp",

 "id": 3

 },

 {

 "type": "interactionSDK",

 "id": 1

 },

 {

 "type": "middleware",

 "id": 2

 }

]

}

If an application client with an ID=3 wants to send a message to the middleware (ID=2) it
shall send the message to the id matching the type=”middleware”. A string stream can be
pushed to the middleware with a message such as the following.

{

 D4.1 – V0.6

Page 58

 "senderID": 3,

 "receiverID": 2,

 "timestamp": 1448465003,

 "message": {

 "numevents": 3,

 "string_stream": "ssvep_events",

 "events": [

 {

 "event": "application_init",

 "timestamp": 1448464782

 },

 {

 "event": "stimuli_start",

 "timestamp": 1448464801

 },

 {

 "event": "stimuli_stop",

 "timestamp": 1448464805

 }

]

 }

}

The middleware client will then parse the message and generate a string stream named
“ssvep_events” containing 3 event markers.

The same procedure is to be followed when the Interaction SDK wants to send the HCI
Triggers to the application client. An example message can be the following.

{

 "senderID": 1,

 "receiverID": 3,

 "timestamp": 1448467003,

 "message": {

 "type": "trigger_command",

 "command_id": 1

 }

}

 D4.1 – V0.6

Page 59

7 Logical view of MAMEM architecture

The logical view of MAMEM architecture is presented in Figure 27. Our goal with this view is
to summarize and present in a comprehensive manner how the different Layers, Modules
and Interfaces fit together in the proposed architecture.

Figure 27: Overall MAMEM Architecture

This architecture is essentially an elaborated version of the high-level architecture that was
presented in the DoA [5], see also Figure 4 of this document. There are four main Layers
constituting our architecture, namely: a) Sensors Layer, b) Middleware, c) Interaction SDK,
and d) Applications Layer. Each Layer incorporates a number of Modules that are responsible
for undertaking the tasks that are necessary for MAMEM system to operate. Moreover, in
order for one Layer to communicate with the other we define a set of Interfaces. These
Interfaces specify how the information should be structured in order to pass from one Layer
to another. Typically, the Layers are associated with Input Interfaces and Output Interfaces
that determine the structure of the information that comes in and out of this Layer. Table 10
presents how the different Layers are associated with their Modules and Interfaces based on
the proposed architecture. In addition, for each Layer, Module and Interface we provide a
reference to the Section of this document (or another deliverable) that elaborates on its
details.

Layer Modules Input Interface Output Interface

 D4.1 – V0.6

Page 60

Sensors Layer

(Deliverable 2.1)

BEPlusLTM driver
(Section 3.3.1)

Low-level device
driver (Deliverable

2.1)

Stream Outlet

(Section 3.3)

SMI driver

(Section 3.3.2)

GSR driver

(Section 3.3.3)

Middleware
(LabStreamingLayer)

(Section 3)

Signal acquisition
(Section 3.4)

Stream Outlet

(Section 3.3)

String Stream Outlet

(Section 3.6.2)

Synched Stream Inlet

(Section 3.3 & Section
3.6.1)

Synched String
Stream Inlet

(Section 3.6.2)

Timestamping
(Section 3.5.5)

Synchronization

(Section 3.5.5)

Interaction SDK
(OpenViBE)

(Section 4)

LSL Acq. Server

(Section 4.3.1)

Stream Inlet from
LSL

(Section 4.3.1)

Signal streamed on
the network

(Section 4.3.1)

LSL Acq. Client

(Section 4.3.1)

Signal from LSL Acq.
Server

(Section 4.3.1)

Signal streamed in
OpenViBE boxes

(Section 4.3.1)

Signal Proc., Feat.
Extrac., Classification

(Section 4.3.2)

Signal from LSL Acq.
Client

(Section 4.3.1)

HCI Triggers

(Section 6.2)

Application-Network
Layer

(Section 6)

Socket. IO Server

(Section 6.1)

HCI Triggers

(Section 6.2)

Event Triggers

(Section 6.2)

HCI Actions

(Section 5.2)

String Steam Outlet

(Section 3.6.2)

Application Layer

(Section 5)

Native Application

(Section 5)

HCI Actions

(Section 6.2)

Start and HCI
process in front-end

Change HCI status of
front-end application

(Section 5)

Event Triggers
(Section 6.2)

Browser Application

(Section 5)

 D4.1 – V0.6

Page 61

application

(Section 5)

Table 10: Association of MAMEM’s Layers, Modules and Interfaces based on the proposed
Architecture

The first Layer is the Sensors Layer that has the role of capturing the signal from the sensor
devices in order to push it further up in our architecture. Apart from the actual hardware
(i.e. EEG recorder, Eye-tracker and GSR sensor), among the Modules of the Sensors Layer we
also classify the Drivers (one for each hardware device) that are necessary to make the
generated signals available for MAMEM’s Middleware. These Drivers have been built using
the SDK of each device (see Deliverable 2.1 [36]) so as to provide the signals in a structure
suitable for our Middleware. This structure is essential the Stream Outlet Interface which
specifies how to structure a stream so as to be compatible with MAMEM’s middleware. The
Stream Outlet Interface is the only Output Interface of the Sensors Layer, whereas as Input
Interface we may consider the output of the low-level drivers that typically come along with
the sensor devices (see Deliverable 2.1 [36]).

The second Layer is the Middleware. The role of this Layer is to act as the mediator between
the sensor devices and the rest of MAMEM’s architecture. In other words, as long as a new
sensor device can comply with the Input Interface of this middleware, the rest of the system
should operate seamlessly. In the proposed architecture, the framework named
LabStreamingLayer has been chosen to serve as MAMEM’s middleware (see Section 3.1 .
The Middleware consist of three Modules, namely Signal Acquisition, Timestamping and
Synchronization. Signal Acquisition is the module responsible for receiving the signals from
the Sensors Layer. The role of Timestamping is to add timestamps on the received signals.
Finally, the most important Module of our Middleware is the Synchronisation Module that
takes care of synchronizing the (originally de-synchronized) signals based on their
timestamps (as well as other sensor-specific delays, see Section 3.5.5 As a result, the signals
can be pushed further-up in MAMEM’s architecture in a synchronized mode. There are two
input and two output interfaces associated with the Middleware. The input interfaces are
the Stream Outlet and the String Stream Outlet. This first refers to the structure that should
be followed by the signal coming from the Sensors Layer. The second is a specific type of
interface that allows our Middleware to receive strings at irregular frequencies, which are
typically used to mark the beginning or the end of an event. In our architecture, we foresee
the use of this interface as the means for the end-user application to communicate the point
in time where a certain action or process should be initiated in the back-end. Finally, the
output interfaces consists of the Synched Stream Inlet and Synched String Stream Inlet,
which specify the structure of the signal and string streams that should be followed by
another layer in order to receive information from the Middleware. The main difference
compared to the signals received by the Middleware is that on its output the signals are
synchronized.

The third Layer in our architecture is the Interaction SDK. The role of this Layer is threefold:
a) communicate transparently with the Middleware, so as to receive the synchronized
signals, b) implement an extensive list of processes and methods for translating the bio-
signal into triggers for the HCI, and c) communicate these triggers with the front-end of our

 D4.1 – V0.6

Page 62

system. In the proposed architecture, the framework named OpenViBE has been selected to
serve as the back-bone of MAMEM’s Interaction SDK (see Section 4.1). OpenViBE consists of
various different Modules. First, we should refer to the Acquisition Server which is the
module responsible for receiving the Signal and String Inlets from our Middleware. This
module should be instantiated as many times as the number of existing signal and string
streams and ensures that these streams will made available to the processes and methods
implemented within OpenViBE. Actually, in order to do this, all instantiated Acquisition
Servers should be paired with an instance of an Acquisition Client, which is the other module
classified under the Interaction SDK Layer. This module ensures that the incoming signal and
string streams will be made available to the processing Modules of OpenViBE, such as Signal
Processing, Feature Extraction and Classification. Finally, in terms of the associated
interfaces we can distinguish between External Input Interfaces, Internal Input Interfaces and
Output Interfaces. In the External Input Interface we can classify the Signal and String Stream
Inlet, which is the structure of the streams that comes out of the Middleware Layer. In the
Internal Input Interfaces (these do not appear in Figure 27 to maintain the clarity of the
diagram) we can classify the Signal Acquisition Server that is used to pass the streams from
the Acquisition Server to the Acquisition Client and the Signal Acquisition Client that is used
to pass the signal from the Acquisition Client to the Processing Modules. Finally, in the
Output Interfaces we classify the HCI Triggers Interface, which is essentially the structure of
the messages that are communicated from the Interaction SDK to the Application-Network
Layer and subsequently to the Application Layer in order for certain HCI commands to be
executed in the front-end application.

The fourth Layer in our architecture is the Applications-Network Layer. The role of this Layer
is to handle the communication between the Interaction SDK and the front-end Application
Layer. In particular, the Applications-Network Layer consists of one module namely,
Socket.IO Server, which is intended to implement a server that will be able to communicate
with a number of clients through network sockets. There are four different interfaces
associated with this Layer. Among the Input Interfaces we can classify the Event Triggers and
the HCI Triggers. The Event Triggers Interface is the structure of the messages that should be
communicated by the end-user application to inform the back-end system that a certain task
has started (e.g. the process of presenting the visual stimuli to the user has started and the
back-end system should decide which of the flickering boxes is selected by the user based on
his/her brain electrical signals). These messages will be subsequently formulated in a String
Stream Outlet that will be passed on to the Middleware. The HCI Triggers Interface is the
structure of the messages that should be communicated from the Interaction SDK to the
Applications-Network Layer in order to pass on the information about the output of a certain
signal analysis tasks (e.g. continuing from the previous example, these messages should
inform the Applications-Network Layer that the flickering box that has been selected by the
user is the one on the upper-left part of the screen). Finally, the output interfaces of the
Applications-Network Layer, consists of: a) the HCI Actions Interface, which specifies the
structure of the information that will be received by the native or web browser application
and be translated in commands for the interface; and b) The String Stream Outlet Interface,
which takes care of translating the event triggers into a string stream outlet suitable for our
Middleware.

 D4.1 – V0.6

Page 63

The fifth and final layer of our architecture is the Application Layer. This Layer is used to
represent the end-user applications that will be operated through the users’ eyes and mind.
It consists of two modules titled as Native Application and Web Browser Application that are
used as containers for all different types of applications that will be developed in MAMEM.
The Interfaces in this Layer are essentially identical with the ones presented in the
Applications-Network Layer where the input/output property is reversed. Thus, the HCI
Action Interface is now the input interface that determines the structure of the messages
that will be translated into HCI commands, and the Event Triggers Interface is the structure
of the messages that are used to mark the begin/end of a certain HCI-related task.

 D4.1 – V0.6

Page 64

8 Conclusions

In this document we have described the proposed MAMEM architecture by specifying all
different components involved, ranging from the sensor devices and the middleware, all the
way to the interaction SDK and the communication with the end-user applications. The logic
instruments that have been used to describe our architecture are Layers, Modules and
Interfaces. Layers are used to denote the parts of our system that serve a different purpose.
Modules are used to describe the core functionalities performed in each layer and the
Interfaces are used to specify how the information flows from one layer to another.
Throughout the document we have provided elaborated descriptions for one of these
Modules and Interfaces and in Section 7 we have presented how the different component fit
together.

MAMEM’s architecture consists of five different Layers that distinguish between the Sensors
Layer, the Middleware, the Interaction SDK, the Application-Network Layer and the
Applications Layer. What is particularly interesting in the proposed architecture is that we
have decided to use as back-bone for the Middleware and the Interaction SDK, two existing
frameworks namely, LabStreamingLayer and OpenViBE. This decision has been favoured for
two main reasons: a) avoid replicating the development effort that has been already
undertaken by the respective community, b) increase the impact of the new functionalities
developed within MAMEM, since they will automatically reach a rather extended
community. After carefully examining these two systems (and their competitors, see
Sections 3 and 4), we have reached the conclusion that they can adequately cover the
requirements derived from MAMEM objectives, and they feature the necessary level of
modularity so as to extent them with MAMEM-specific functionalities.

Finally, it is important to make a special reference to the Application-Network Layer which is
the layer used to handle the communications between the back-end of our system and the
end-user applications. Although this layer adds some additional complexity in the
implementation of a new functionality, it has been deemed necessary to ensure that
MAMEM system will be able to communicate with all different type of front-end
applications, independently on whether are running as native applications or through a web
browser.

 D4.1 – V0.6

Page 65

9 References

[1] “Realtime Web Analytics With no Sampling,” 2015. *Online+. Available:
https://www.netmarketshare.com/operating-system-market-
share.aspx?qprid=10&qpcustomd=0&qpsp=201&qpnp=1&qptimeframe=M.

[2] “Emotiv EPOC,” Emotiv, 2015. *Online+. Available: https://emotiv.com/epoc.php.

[3] “TIOBE Index,” October 2015. *Online+. Available:
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html.

[4] A. S. Tanenbaum and v. S. Maarten, Distributed Systems : Principles and Paradigms,
Prentice Hall, 2002.

[5] “MAMEM Project Description of Actions – PartB,” 2015. - Readable form (requires
authentication): http://mklab.iti.gr/mamem/images/3/32/PartB_MAMEM.pdf

[6] “Brain Products GmbH,” 2015. *Online+. Available: http://www.brainproducts.com/.
[Accessed October 2015].

[7] “EYE-EEG plugin,” 2015. *Online+. Available: http://www2.hu-berlin.de/eyetracking-
eeg/.

[8] “EEGLAB,” 2015. *Online+. Available: http://sccn.ucsd.edu/eeglab/.

[9] “BIOPAC ACQKNOWLEDGE SOFTWARE,” 2015. *Online+. Available:
http://www.biopac.com/product/acqknowledge-software/.

[10] “Open Vibe - Software for Brain Computer Interfaces and Real Time Neurosciences,”
Inria, 2015. [Online]. Available: http://openvibe.inria.fr/.

[11] “Virtual Reality Peripheral Network - Official Repo,” 2015. *Online+. Available:
https://github.com/vrpn/vrpn/wiki.

[12] “Labstreaminglayer,” 2015. *Online+. Available:
https://github.com/sccn/labstreaminglayer.

[13] “Streaming Layer API,” 2015. *Online+. Available:
https://github.com/sccn/labstreaminglayer/wiki.

[14] “LSL - Basic Operation,” 2015. *Online+. Available:
https://code.google.com/p/labstreaminglayer/wiki/BasicOperation.

[15] “Rolling Shutter vs. Global Shutter,” 2015. *Online+. Available:
http://www.qimaging.com/ccdorscmos/triggering.php.

[16] “Sparkfun - Logic Levels,” 2015. *Online+. Available:
https://learn.sparkfun.com/tutorials/logic-levels/introduction.

[17] “Logic Levels - TTL Logic Levels,” 2015. *Online+. Available:
https://learn.sparkfun.com/tutorials/logic-levels/ttl-logic-levels.

 D4.1 – V0.6

Page 66

[18] “Cedrus StimTracker,” 2015. *Online+. Available: http://cedrus.com/stimtracker/.

[19] B. Guinot, “Solar time, legal time, time in use,” in Metrologia, Volume 48, 2011, pp.
S181-S185.

[20] D. L. Mills, Computer Network Time Synchronization: The Network Time Protocol,
Taylor & Francis, 2010.

[21] “Stream Header Synchronization Parameters,” 2015. *Online+. Available:
https://github.com/sccn/labstreaminglayer/wiki/TimeSynchronization.wiki#stream-
header-synchronization-parameters.

[22] “Labstreaminglayer Wiki,” 2015. *Online+. Available:
https://github.com/sccn/labstreaminglayer/wiki.

[23] Hend Suliman Al-Khalifa, Remya P.G., Eye Tracking and e-Learning Seeing
ThroughYour Students' Eyes, eLearn Magazine. ACM Publication, June 2010.

[24]
PNCDI 2, http://telecom.etc.tuiasi.ro/telecom/staff/rbozomitu/asistsys/

[25] Lupu R.G., Ungureanu F., Bozomitu R., Mobile Embedded System for Human
Computer Communication in Assistive Technology. Proceedings IEEE ICCP 2012, Cluj-
Napoca, Romania, 209−212, August 2012.

[26] Lupu R.G., Ungureanu F., Siriteanu V., Eye Tracking Mouse for Human Computer
Interaction. The 4th IEEE - -

-23, 2013.

[27] Jacob, R. J. K. 1993. Eye Movement-Based Human-Computer Interaction Techniques:
Toward Non-Command Interfaces.
http://www.eecs.tufts.edu/~jacob/papers/hartson.pdf

[28] Zhai, S., Morimoto, C. and Ihde, S. 1999. Manual And Gaze Input Cascaded (MAGIC)
Pointing. Proc. of the SIGCHI conference on human factors in computing systems: the
CHI is the limit, pp. 246-253.

[29] Lupu, Robert Gabriel, and Florina Ungureanu. "A survey of eye tracking methods and
applications." Bul Inst Polit Iaşi (2013): 71-86.

[30] Jönsson, Erika. "If looks could kill–an evaluation of eye tracking in computer games."
Unpublished Master's Thesis, Royal Institute of Technology (KTH), Stockholm,
Sweden (2005).

[31] Smith, J. David, and T. C. Graham. "Use of eye movements for video game control."
Proceedings of the 2006 ACM SIGCHI international conference on Advances in
computer entertainment technology. ACM, 2006.

[32] Jacob, R. J. What You Look at is What You Get: Eye Movement Based Interaction
Techniques. In CHI ’90, 1990, pp. 11-18.

[33] Tanriverdi, V., Jacob, R. J. K. Interacting with Eye Movements in Virtual
Environments. In CHI ’00 Proceedings (2002), ACM, pp. 265-272.

 D4.1 – V0.6

Page 67

[34] Core Transport Library of LabStreamingLayer, source:
https://www.youtube.com/watch?v=Y1at7yrcFW0.

[35] Hardware supported by LabStreamingLayer, source:
https://code.google.com/p/labstreaminglayer/wiki/SupportedDevices

[36] D2.1 - Prototype modules implementation for signal capturing, MAMEM Consortium,
November 2015. url (requires authentication to MAMEM wiki):
http://mklab.iti.gr/mamem/images/f/fd/D2.1_Sensor_configuration_and_signal_cap
turing_final.pdf

[37] Available Tools for Brain Computer Interfaces, Christian A. Kothe Swartz Center for
Computational Neuroscience, University of California San Diego, source:
https://www.youtube.com/watch?v=rpA7uGa5nDM&index=7&list=PLbbCsk7MUIGc
O_lZMbyymWU2UezVHNaMq

[38] The BioSig Project, http://biosig.sourceforge.net/

[39] BCI2000 – SCHALK LAB, http://www.schalklab.org/research/bci2000

[40] BCI Lab Group, http://about.bci-lab.info/home

[41] Y. Renard, F. Lotte, G. Gibert, M. Congedo, E. Maby, V. Delannoy, O. Bertrand, A.
Lécuyer, “OpenViBE: An Open-Source Software Platform to Design, Test and Use
Brain-Computer Interfaces in Real and Virtual Environments”, Presence :
teleoperators and virtual environments, vol. 19, no 1, 2010

[42] OpenViBE, Tutorial – Level 1 – The most basic OpenViBE setup, source:
http://openvibe.inria.fr/tutorial-the-most-basic-openvibe-setup/

[43] OpenViBE, List of processing boxes, source:
http://openvibe.inria.fr/documentation/unstable/Doc_BoxAlgorithms.html

[44] OpenViBE, Implementing a Signal Processing Box, source:
http://openvibe.inria.fr/tutorial-2-implement-algorithm-and-use-it-in-boxes/

[45] OpenViBE, Handling Messaging Between Boxes, source: http://openvibe.inria.fr/box-
messaging-for-developers/

[46] OpenViBE, Making Boxes available in the designer, source:
http://openvibe.inria.fr/introduction-algo-boxes/

[47] OpenViBE, Supported Acquisition Systems, source:
http://openvibe.inria.fr/supported-hardware/

[48] Wolpaw J, Birbaumer N, McFarland DJ, Pfurtscheller G, Vaughan TM, “Brain-
computer interfaces for communication and control.“ Clin Neurophysiol. 2002
Jun;113(6):767-91.

[49] Guger, C., et al. (2009). How many people are able to control a P300-based brain–
computer interface (BCI)? Neuroscience Letters, 462, 94–98.

[50] Intendix (2010), source: http://www.intendix.com

[51] TOBI (2013), Tools For Brain Computer Interaction, ICT Project, source:

 D4.1 – V0.6

Page 68

http://www.tobi-project.org/

[52] Graz BCI Lab (2013), source: http://bci.tugraz.at

[53] WebSocket, source: http://www.websocket.org/

[54] Socket. IO Model, source: http://socket.io/

[55] Socket.IO example, source: https://github.com/socketio/socket.io-client-cpp

[56] NodeJS, soruce: https://nodejs.org/en/

[57] C. Guger, A. Schlögl, C. Neuper, D. Walterspacher, T. Strein, and G. Pfurtscheller,
“Rapid prototyping of an EEG-based brain-computer interface (BCI),” IEEE Trans.
Neural Syst. Rehab. Eng., vol. 9, no. 1, pp. 49–58, 2001

[58] G. Pfurtscheller, R. Leeb, C. Keinrath, D. Friedman, C. Neuper, C. Guger, and
M. Slater, “Walking from thought,” Brain Res., vol. 1071, no. 1, pp. 145–152, 2006.

[59] N.J. Hill, T.N. Lal, M. Schroder, T. Hinterberger, B. Wilhelm, F. Nijboer, U.
Mochty, G. Widman, C. Elger, B. Scholkopf, A. Kubler, and N. Birbaumer,
“Classifying EEG and ECoG signals without subject training for fast BCI
implementation: Comparison of nonparalyzed and completely paralyzed subjects,”
IEEE Trans. Neural Syst. Rehab. Eng., vol. 14, pp. 183–186, June 2006.

[60] N. Weiskopf, K. Mathiak, S.W. Bock, F. Scharnowski, R. Veit, W. Grodd, R.
Goebel, and N. Birbaumer, “Principles of a brain-computer interface (BCI) based
on real-time functional magnetic resonance imaging (fMRI),” IEEE Trans. Biomed.
Eng., vol. 51, pp. 966–970, June 2004.

[61] S.-S. Yoo, T. Fairneny, N.-K. Chen, S.-E. Choo, L.P. Panych, H. Park, S.-Y. Lee, and F.A.
Jolesz, “Brain-computer interface using fMRI: Spatial navigation by thoughts,”
Neuroreport, vol. 15, no. 10, pp. 1591–1595, 2004.

[62] F. Matthews, B.A. Pearlmutter, T.E. Ward, C. Soraghan and C. Markham,
"Hemodynamics for Brain-Computer Interfaces," in Signal Processing Magazine, IEEE
, vol.25, no.1, pp.87-94, 2008

[63] Smartbox, http://thinksmartbox.com

[64] Tobii Dynavox, www.tobiidynavox.com

[65] Tobii AB, www.tobii.com

[66] Eyetech Digital Systems, www.eyetechds.com

[67] LC Technologies, www.eyegaze.com

[68] Prentke-Romich Company, www.prentrom.com

[69] SensoMotoric Instruments, www.smivision.com

[70] Visual Interaction myGaze, www.mygaze.com

[71] The Eye Tribe, http://theeyetribe.com

[72] OptiKey, www.optikey.org

 D4.1 – V0.6

Page 69

[73] The EyeWriter Project, www.eyewriter.org

[74] Vision Key, www.eyecan.ca

[75] EBNeuro BEPlusLTM, http://www.ebneuro.biz/en/neurology/ebneuro/galileo-
suite/be-plus-ltm

[76] SMI iViewREDN, http://www.smivision.com/en/gaze-and-eye-tracking-
systems/products/red250-red-500.html

[77] Shimmer3 GSR+, http://www.shimmersensing.com/shop/shimmer3-wireless-gsr-
sensor

[78] Emotiv EPOCH, https://emotiv.com/product-
specs/Emotiv%20EPOC%20Specifications%202014.pdf

[79] myGaze Assistive,
http://www.mygaze.com/fileadmin/download/Tech_Specs/mygaze_assistive_2_tech
specs.pdf

[80] EGI 300 Geodesic EEG System (GES 300), http://www.egi.com/clinical-
division/clinical-division-clinical-products/ges-300

[81] SR Research, http://www.sr-research.com/

[82] SCHAUGENAU, http://schaugenau.west.uni-koblenz.de

[83] GitHub, https://github.com/

[84] Named pipes, https://en.wikipedia.org/wiki/Named_pipe

[85] Memory-mapped file, https://en.wikipedia.org/wiki/Memory-mapped_file

[86] Unix signal, https://en.wikipedia.org/wiki/Unix_signal

[87] Sockets, https://en.wikipedia.org/wiki/Network_socket

[88] Socket-IO-peer-to-peer, http://socket.io/blog/socket-io-p2p/

[89] WebRTC, http://www.webrtc.org/

