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Executive Summary 

This report presents the output of the efforts allocated under T4.1 of WP4, which deals with 
MAMEM architecture. The document covers the full spectrum of components that will be 
necessary to satisfy MAMEM’s technical objectives.  

In this respect, Section 2 addresses the considerations that have to do with the preferred 
operating system, the programing language and the specification of the computing platform. 
Section 3 elaborates on MAMEM’s middleware placing particular emphasis on the 
synchronization between heterogeneous signals. Section 4 discusses the options that are 
available for acting as the basis of MAMEM’s interaction SDK, as well as the preferred 
platform. Section 5 provides a quick overview of BCI applications based on eye-tracking and 
EEG signals, so as to motivate the necessity of an additional layer in the architecture 
dedicated for handling the communication between the back-end system and the end-user 
applications, described in Section 6. Finally, Section 7 presents the overview of MAMEM 
architecture describing how everything can fit together under a common framework. Section 
8 concludes the report.       

In presenting MAMEM’s architecture we have adopted the following approach. Each section 
elaborates on a different layer of the architecture by describing the modules that implement 
the functionality of this layer and the interfaces that are used to communicate with the rest 
of the layers. Finally, in the last main section of the report we present a schematic overview 
of the entire architecture and describe the modules that belong in each layer, as well as the 
interfaces that are used to communicate with each other. In this description, we make sure 
to provide references to specific sections of this report (or other MAMEM deliverables) that 
elaborate on the details of each module and interface.  
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Abbreviations and Acronyms 

 

API  Application Programming Interface 

BCI Brain Computer Interface 

DoA Description of Actions 

ECG ElectroCardioGram 

EEG ElectroEncephaloGram 

ET Eye Tracker 

GSR Galvanic Skin Response 

GUI Graphical User Interface 

HCI Human-Computer Interface 

HMD Head Mounted Display 

HR Heart Rate 

HW Hardware 

LAN Local Area Network 

LPT Line Print Terminal (used to designation a parallel port interface) 

LSL Lab Streaming Layer 

MD Muscular Disorder 

OS Operating System 

PC Personal Computer 

PD Parkinson Disease 

SDK Software Development Kit 

SW Software 

TCP Transmission Control Protocol 

TTL Transistor Transistor Logic 

UDP User Datagram Protocol 
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1 Introduction  

MAMEM’s overarching goal, as defined in the DoA [5], is to integrate people with disabilities 
back into society by endowing them with the critical skill of managing and authoring 
multimedia content using eye-movements and mental commands. In reaching this goal, the 
concept of Error! Reference source not found. has been proposed that, among others, 
envisages the achievement of the following technical objectives:  

Obj.1 – Capture, record and make available at the necessary scale, real-time and accurate 
information about eye-movements, brain electric signals and bio-measurements.  

Obj.2 – Develop the necessary algorithms for translating this information into meaningful 
control that will take the form of semantic widgets. 

Obj.3 – Implement a middleware sitting on top of current operating systems so as to make 
these semantic widgets available as elementary building blocks for implementing 
multimedia-related interfaces. 

Obj.5 – Design, implement and evaluate a set of prototype interface applications that rely on 
MAMEM’s middleware to execute the multimedia-related usage scenarios through the 
user’s eyes and mind. 

The goal of this report is to define the software architecture that will facilitate the 
achievement of the aforementioned technical objectives. 

 
Figure 1: MAMEM concept for enabling disabled people to participate in society 
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What is evident from Figure 1 and the associated technical objectives is that MAMEM’s 
architecture should be organized into layers. Indeed, Obj.1 calls for a sensors’ layer that will 
acquire the signal from the sensor devices; Obj.2 calls for an interaction layer of algorithms 
and methods that will compose and SDK for HCI using eye movements and mental 
commands; Obj.3 calls for a middleware layer that will make transparent the 
communication between the sensor devices and the interaction layer; and finally, Obj.4 calls 
for an applications layer that will foster the development of the end-user applications. This 
distinction into layers was made more concrete in the description of WP4 were the 
arrangement of Figure 2 was used to demonstrate the flow of information across MAMEM’s 
software architecture. The goal of this report is to give substance in each of the boxes 
presented in Figure 2 and discuss the details that will be necessary to implement MAMEM’s 
system. 

 

Figure 2: Different layers of MAMEM’s software architecture 

Apart from this preliminary identification of layers, the DoA [5] listed also a set of 
requirements for some of them. Given that the sensors’ layer and the applications’ layer 
were largely dependent on the technical and functional requirements - to be defined as part 
of WP6, more emphasis was placed on the middleware and the Interaction SDK. In the 
following, we summarize the goals and requirements that have been set for these layers.  

Middleware: The goal of a middleware is to sit between the core API of the underlying 
operating system and the high-level programming environment of an SDK. Thus, in the 
context of BCI systems, its goal is to facilitate, on the one hand, the integration of add-on 
sensor modules (i.e., eye tracker, EEG recorder and bio-sensors) and, on the other hand, the 
execution of algorithms processing the captured signals. In what refers to the middleware, 
there have been four basic requirements that motivated our decisions in designing its 
architecture: a) hardware agnostic, in the sense of being able to support a long list of 
existing sensor devices (i.e. EEG, eye-tracking and galvanic skin response) and keeping the 
barrier very low for incorporating new devices, b) cross-platform, in the sense of being able 
to support all major operating systems (i.e. Windows, Apple OS and Linux), c) 
synchronization ready, in the sense of being able to receive signals from multiple sensors 
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and serve them in the synchronized fashion, d) communication ready, in the sense of being 
able to transparently communicate with MAMEM’s interaction SDK. 

Interaction SDK: The goal of the Interaction SDK has been set on implementing the necessary 
algorithms and methods for translating the acquired signals into meaningful commands for 
the human-computer interface. In this case, the requirements motivating our decisions are: 
a) transparent, in terms of the communication with the middleware, b) rich, in terms of the 
supported methods and process, c) extendable, in terms of adding more methods and 
processes, and d) easy to use, in the sense of allowing even non-experts to “program” their 
own analysis process. 

In presenting MAMEM’s software architecture, we specify all different components involved, 
ranging from the sensor devices and the middleware, all the way to the interaction SDK and 
the communication with the end-user applications. The logic instruments that we use to 
describe our architecture are Layers, Modules and Interfaces. Layers are used to denote the 
parts of our system that serve a different purpose. Modules are used to describe the core 
functionalities performed in each layer and the Interfaces are used to specify how the 
information flows from one layer to another. Throughout the document we make sure to 
provide elaborated descriptions for each one of these Modules and Interfaces and towards 
the end of this report we present how the different components fit together under a 
common architecture.  

In this respect, Section 2 addresses the considerations that have to do with the preferred 
operating system, the programing language and the specification of the computing platform. 
Section 3 elaborates on MAMEM’s middleware placing particular emphasis on the 
synchronization between heterogeneous signals. Section 4 discusses the options that are 
available for acting as the basis of MAMEM’s interaction SDK, as well as the preferred 
platform. Section 5 provides a quick overview of BCI applications based on eye-tracking and 
EEG signals, so as to motivate the necessity of an additional layer in the architecture 
dedicated for handling the communication between the back-end system and the end-user 
applications, described in Section 6. Finally, Section 7 presents the logic overview of 
MAMEM architecture describing how everything can fit together under a common 
framework. Section 8 concludes the report. Given that the sensors’ layer is the topic of 
another deliverable (i.e. D2.1 – Prototype modules implementation for signal capturing [36]) 
it is not thoroughly discussed in this report. 

Finally, it is important to note that in deciding about MAMEM’s software architecture our 
intention has been to make the best possible use of the existing knowledge and 
developments in brain computer interfaces and avoid replicating the development effort 
that has been already undertaken by the respective community. In this respect, the open 
source frameworks of LabStreamingLayer [12] and OpenViBE [10] have been chosen to play 
an essential role in the implementation of MAMEM’s system. 
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2 Base Platform Considerations 

2.1  Operating system 

In the project DoA (Description of Actions) [5], it has been set the ambitious goal to realize a 
platform independent architecture for the software (SW) side of the MAMEM project. While 
such goal has its merits to ensure the broadest possible accessibility to the system, it poses 
extremely high challenges in the realization of the project, for a modest return in terms of 
target population. 

In fact according to recent statistics [1] over Desktop and Laptop internet browsing, 
Windows XP and subsequent Windows versions accounts for 88.97% of all web market 
share. If we consider tablets and smartphones the picture changes considerably, with 
Windows accounting for 50.83%, Android for 25.63% and iOS for 16.24%. It is however to be 
considered that there are no Eye Tracking devices which can be connected to smartphones, 
and Android tablet support it is so far only announced but not available. The situation is 
similar for scientific grade EEG sensors, while Emotiv’s EPOC recently added support for 
Android and iOS [2]. 

Furthermore, different Operating Systems offer radically different interaction paradigms on 
the application side, which increases the development effort that is necessary to support all 
of them. So, while the proposed architecture will be flexible enough as to allow easy porting 
to additional operating systems as these become viable options on the sensor side, the initial 
efforts will be focused on getting the system to work on the platform which offers the 
largest coverage in terms of user base as well as available sensors, Microsoft Windows. 

2.2  Programming language 

We tried to identify the most convenient programming language to implement MAMEM 
software architecture. The main decision criteria for choosing the programming language for 
the realization of the system are: 

1. Ease of integration with the SDKs of the sensors which will be part of the system. 
2. Good performance and low resource utilization, to allow near real-time interaction and 

synchronization on affordable host systems. 
3. Widespread knowledge and use of the programming language among the developers 

community, to broaden the potential developer community and leverage as much as 
possible existing libraries and tools. 

4. Ease of portability to different operating systems to future-proof the system. 

Considering those 4 criteria, Table 1 presents the best candidates for serving as 
programming languages of the middleware, ranked by popularity according to the TIOBE 
index [3]: 
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Programming 
language Pros/Cons 

 

Supported on all OS platforms, produces the highest performing object 
code (also on low power and embedded CPUs) and low level access to 
sensors, for example to implement specific device drivers. The code can 
be recompiled with some efforts to run on different operating systems. 
(ranking is based on the popularity of both C and C++)  

 

Supported on all OS platforms, easy to program, not optimal for 
performance oriented SW. 

 

Easy to program, good performance but Microsoft proprietary and 
Windows only 

 

Supported on all OS platforms, easy to program, not optimal for 
performance oriented SW, allows very “loose” programming style which 
can result in large projects being difficult to maintain without strong 
discipline from all developers 

Table 1: Pros and cons for the most popular programming languages 

In consideration of its robust performance and the near real-time requirements for the 
project, the language of choice for MAMEM will be C/C++.  

The chosen eye tracking system, the SMI REDn Scientific [76], offers a C API for interfacing 
with it using its SDK; furthermore all other popular ET Systems from SMI GmbH [69], Tobii AB 
[65], The Eye Tribe [71], EyeTech DS [66] support C / C++ APIs. Similarly, the chosen EEG 
recording system EBNeuro BEPlusLTM [75] amplifier offers a C++ SDK and this is the case for 
all widespread EEG recording systems.  

2.3  Computing Platform Setup & Specifications 

In our target system, the Eye Tracker and the EEG are sensors which can require a significant 
amount of processing power. 

Indeed, all modern eye tracking systems are based on one or more InfraRed cameras 
capturing real time video streams of the user’s eyes. These video streams are usually 
transferred to a host PC through a high speed connection (USB 2.0 or 3.0, Firewire, GigE or 
CamLink) on which runs an eye tracking software. This software consists of a set of complex 
and usually proprietary computer vision algorithms which are executed on the host PC CPU – 
although a few ET devices exist which mount on-board processing capabilities. 

Similarly, EEG recording systems capture the mean electrical activity of the brain in different 
locations of the head through a set of electrodes placed on the scalp. This activity is 
subsequently amplified through an amplifier that generates, what is usually referred as raw 
data, i.e. full bandwidth sampled signals. However, in order for these signals to become 
usable in a BCI system a certain amount of pre-processing steps are employed, such as de-
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noising, artefact removal, band-pass filtering and spectral analysis. If we consider that in a 
BCI setting most of these operations will have to be performed on-line, and occasionally in 
the full range of captured signals (i.e. can range from 8 to 256), it is evident that the 
algorithms that are necessary to generate high-level events can take significant amount of 
processing resources.  

On the other hand Galvanic Skin Response sensors measure single channel, slow evolving 
signals and do not require particularly complex algorithms to be processed; the same can be 
said for heart rate sensors. 

With the sensor array chosen for MAMEM (one EEG, one ET and one GSR sensor) one 
common configuration used to minimize possible data loss would be a dual PC setup (see 
Figure 3), with one PC dedicated to processing the video streams coming from the ET 
module, and the other PC performing the signal processing pertaining to the EEG channels; 
the GSR sensor can be connected to either PC due to its low resource usage. 

 

Figure 3: A “dual PC” setup, with one Eye Tracking system connected to one computer and 
the EEG connected to the second computer. The two computers communicate with each 

other via a Local Area Network. 

Such a dual PC setup ensure that the concurrent load of ET and EEG processing does not 
(temporarily) overwhelm the system capabilities. This can happen for a number of reasons 
due to the non-deterministic nature of the computational load deriving from the sensors, as 
well as the resource scheduling (CPU, memory, etc) on commercial, non real-time Operating 
Systems such as Microsoft Windows or MacOS. 

When such a high temporary peak in the processing load occurs, it can happen that either 
one of (or all) the sensor data cannot be processed within the expected time-slot, resulting 
in loss of data. 
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As it minimizes the chances of temporary data loss, such dual PC setup is a popular 
arrangement for scientific research which combines ET and EEG, but it also has some serious 
drawbacks: 

 The total system cost is significantly higher when using 2 distinct PCs, and while this is 
acceptable in a lab environment, it would pose a higher barrier to a broad adoption of 
the MAMEM system as an assistive device. 

 Even more important, the use of 2 PCs would limit the mobility and portability of the 
system, taking twice as much space, and consume twice as much energy.  

 The data synchronization between the 2 systems becomes more difficult as each PC has 
its own clock and it is a well known fact in distributed systems that different clocks on a 
PC network have different offsets and tend to drift apart [4]. 

 The need for a (reliable) LAN connection between the PCs, ideally through a cable and 
router. This is due to the fact that wireless networks have unpredictable latencies which 
can be affected by difficult to control environmental factors such as sources of 
electromagnetic interferences in the same spectrum, other wireless networks active in 
the same space, etc. 

As the goal of MAMEM is to realize an HCI interaction device, temporary data loss is not a 
major issue as the only practical consequence is a momentary interruption in the service 
offered by the device. As long as such interruption is short in duration and sporadic in 
occurrence it will not affect negatively the usability of the system. However, in consideration 
of all aforementioned drawbacks of the dual PC arrangement, it is more practical to use a 
single PC to process the data provided by all sensors and the respective event algorithms. 
The initial specs of such PC will be conservatively "high end" (i.e. heavyweight installation, 
see Section 2.4 to ensure a smooth functioning of all sensors without too many 
interruptions, and as the system matures we will propose a minimum viable configuration 
(i.e. lightweight installation, see Section 2.4 to lower the total system cost and possibly allow 
further portability.  

The recommended initial specs are summed up in the following Table 2. 

System Property Initial Recommended Specs Future Specs 

CPU  
Quad Core Intel Core i5 (5th 
generation) or better Core i3 or Atom Z3xxx 

Operating System Windows 8.1 64bit Windows 10 

PC Form Factor Desktop / Tower Laptop or Tablet 

Main Memory 8GB or more  

Connectivity USB3.0 interface with Intel Chipset  

Add-ons 

LPT interface add-on card to 
experiment with HW 
synchronization  

Table 2 Recommended System Specs (for the heavyweight installation, see Section 2.4  
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2.4  MAMEM installations 

In MAMEM two types of installations are envisaged, a heavyweight and a lightweight. The 
goal for the heavyweight installation is to fully support MAMEM’s experimental process 
without posing any restrictions on the hardware, stemming from the requirements of 
portability, cost-effectiveness and easy of use. This installation will be used to facilitate the 
development of the novel algorithms for translating the signals into commands and build-up 
the interaction SDK.  

When the interaction SDK reaches a certain level of maturity, we will also implement a 
lightweight version of MAMEM installation. Our goal with this lightweight installation is to 
be: a) easily portable so as to offer MAMEM functionalities in a home environment, b) cost-
effective in terms of the employed sensor devices so as to be affordable by an individual, 
and c) easy to setup and configure, so as to support the scenario of a non-expert using this 
installation for interacting with his personal computer. The main challenge for the 
lightweight installation is to support the functionalities of the interaction SDK while 
addressing the requirements of portability and cost-effectiveness.  

Table 3 presents the array of sensors that have been selected by MAMEM consortium to 
implement the heavyweight and lightweight installation. 

Installation EEG Sensor Eye-tracking GSR Sensor 

Heavyweight EBNeuro  BEPlusLTM 
[75]  

SMI iViewREDN [76] Shimmer3 GSR+ [77] 

Lightweight Emotiv EPOCH [78] myGaze Assistive 2 [79] Shimmer3 GSR+ [77] 

Table 3: Sensor devices considered for MAMEM’s heavyweight and lightweight installations 

In the case of CERTH and given the availability of an existing EEG recording installation in its 
premises, the experimental process will be also supported by the EGI 300 Geodesic EEG 
System (GES 300) [80], using a 256-channel HydroCel Geodesic Sensor Net (HCGSN). 
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3 Middleware  

As shown in Figure 4, MAMEM middleware runs on top of the sensors layer with the aim to 
make transparent the process of signal acquisition and de-noising, as well as its 
synchronization through time-stamping across different sensor devices. Moreover, through 
the Interaction SDK our goal is to also make transparent the process of interfacing with the 
function calls of the underlying operating system for accessing the navigation controls of a 
software application. In order to achieve this, our middleware will rely on the APIs offered by 
the operating systems for interfacing with their core and acquire the signals. Subsequently, 
the middleware will take care of synchronizing the different signals based on their 
timestamps and serve the synchronized signals to the interaction SDK. This SDK will 
incorporate the functions necessary to process the signal so as to translate it into interaction 
commands. Finally, the last objective that has been set for the design of our architecture is 
for MAMEM’s middleware and SDK to facilitate their extension with new, third party 
interaction paradigms for touch-less interface control.  

 

Figure 4: Role of the Middleware in the MAMEM architecture stack (figure taken from the 
DoA [5] – updated to reflect the organization of MAMEM’s architecture into layers) 

Specifically, the role of the middleware as a software component is to provide a glue layer 
which collects and processes the signals from the sensors, provides mechanisms to 
synchronize them and put them all on a single time scale, and passes the sensor data to the 
higher layers. 

On top of the (Sensor) Middleware sits another abstraction layer, called Interaction SDK, 
which receives the sensor data, passes it to the specialized data processing algorithms which 
generate events out of the raw sensor data, and passes the events with their own 
timestamps to the application layer. 
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In this sense, the Interaction SDK takes also the role of mediating between the middleware 
and the end-user applications, so we can speak of a Generalized Middleware which includes 
both the sensor middleware and the Interaction SDK (Figure 5). 

The scope of this section is focused on the (sensor) Middleware, which will provide the 
foundation upon which the higher interaction layers and applications will be built. Sections 4 
and 5 provide a discussion for the interaction and application layers.  

 

Figure 5: Generalized Middleware Architecture 

3.1  Industry Standards  

The natural first step to plan the middleware architecture and its realization was to search 
for existing solutions addressing some of the challenges posed by our project, with the 
intention to integrate, augment and customize for our system. 

As ET and EEG interfacing and synchronization is already quite common in the research field, 
we found a number of ready solutions which provide the basic functionalities of data 
acquisition, synchronization, time stamping, and data transport. 

Significantly different techniques exist, stemming from different requirements, especially in 
the field of synchronization; a summary of this will be provided in Section 3.5 . Table 4 
discusses the pros and cons for some of the existing solutions. 

Solution Discussion 

Brain Vision 
Analyzer [6] 

Commercially available software package from Brain Products GmbH 
[6]: it performs automatic synchronization of EEG and ET data on the 
basis of common TTL event markers (See Chapter 3.5.1  ); however the 
synchronization is realized offline at the end of the experiment and 
hence is not suitable for our project. 

EYE-EEG [1] A similar solution, but open source, is EYE-EEG [7], a plug-in for 
EEGLAB [8] which is a Matlab toolbox for processing and analyzing EEG 
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data. Synchronization is based on HW TTL markers and is offline; a 
number of manual steps are required to format the data in a way that 
it can be imported and processed then in EEGLAB. 

Acqknowledge [9] 

From BIOPAC [9] is another widely adopted commercial software for 
analysis, recording and synchronization of EEG signals; it offers a large 
number of predefined filters and analysis routines, has built-in support 
for ECG signals, however it also works only offline. 

VRPN [11] 

Middleware designed to offer a network-transparent interface 
between a set of different sensors possibly located on multiple host 
PCs. It is real-time, multi-platform (Windows, OSX, Linux, Android) and 
it is generally possible to support new devices by writing appropriate 
plugins, however its main field of application, as the name suggests, is 
Virtual Reality systems, and has a broad support of drivers and plug-
ins only for motion trackers (e.g. Microsoft Kinect, 3D Mice, OptiTrack, 
etc). 

Labstreaminglayer 
[12] 

Open source middleware specifically developed with the goal to 
provide a unified collection of measurements from heterogeneous 
sensors to be used in research applications. It is multi-platform 
(Windows, Linux, OSX), supports wrapper interfaces for the most 
common programming languages (C, C++, Python, Java, C#, Matlab), 
can work online as well as on recorded data, can seamlessly transport 
data across a network of PCs, provides means of timestamping and 
synchronization of sensor data, and already supports a large number 
of EEG, ET, mice and motion capture sensors. 

Table 4: Existing solutions for serving as the core of MAMEM’s middleware 

Since LabStreamingLayer already offers a significant portion of the required functionality 
required for MAMEM middleware, it has been decided to become a core component of our 
architecture and be used to collect data from the sensors, data transport and 
synchronization.  

3.2  Lab Streaming Layer 

Lab Streaming Layer (LSL) is a system for the unified collection of measurement time series 
in research experiments that handles both the networking, time-synchronization, (near-) 
real-time access, as well as (optionally) the centralized collection, viewing and disk recording 
of the data. The LSL distribution consists of two main components: 

a) The core transport library (liblsl) and its language interfaces (C, C++, Python, Java, C#, 
MATLAB), as shown in Figure 6:. This library that constitutes the heart of LSL is general-
purpose and cross-platform (Win/Linux/MacOS, 32/64), satisfying the platform 
independent requirement that we have set for MAMEM’s middleware.  
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Figure 6: Core transport library of LSL (source: [34]) 

b) A suite of tools built on top of the library, including a recording program, online 
viewers, importers, and apps that make data from a range of acquisition 
hardware available on the lab network (for example audio, EEG, ET, or motion capture), 
as shown in Figure 7. This suite of tools makes evident the simplicity of extending LSL 
with new drivers (e.g. for supporting new sensor devices), or communicating with third 
party tools (e.g. like SDKs for processing, or viewing the signals) and satisfies the 
requirement of adopting a modular and extendable architecture. 

 

Figure 7: Network view of LSL (source: [34]) 

The lab streaming layer was originally developed to facilitate human-subject experiments 
that involve multi-modal data acquisition, including both brain dynamics (primarily EEG), 
physiology (EOG, EMG, heart rate, respiration, skin conductance, etc.), as well as behavioural 
data (motion capture, eye tracking, touch interaction, facial expressions, etc.) and finally 
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environmental and program state (for example, event markers). Thus, it already supports an 
extended list of devices, as presented in Table 5. It is evident from this Table that LSL covers 
a wide range of existing hardware devices and, to a large extent, covers the hardware-
agnostic requirement that has been set for MAMEM’s middleware. 

EEG Hardware (un-tested systems are marked with u) 

ABM B-Alert X4/X10/X24 wireless (u) 

BioSemi Active II Mk1 and Mk2 

Brain Products ActiChamp series 

Brain Products BrainAmp series 

BrainVision RDA client 

Cognionics dry/wireless 

Enobio dry/wireless (u) 

g.Tec g.USBamp 

g.Tec g.HIamp (u) 

MINDO dry/wireless 

Neuroscan Synamp II and Synamp Wireless (u) 

EGI AmpServer 

BEPlusLTM (as part of MAMEM) 

Emotiv EPOCH (as part of MAMEM) 

Eye Tracking Hardware (untested systems marked with a (u) 

SMI iViewX 

SMI Eye Tracking Glasses 

Tobii Eye trackers (u) 

SR Research Eyelink (very basic) 

Custom 2-camera eye trackers (with some hacking) 

Human Interface Hardware 

Computer mice, trackballs, presenters, etc. 

Computer keyboards 

DirectX-compatible joysticks, wheels, gamepads and other controllers 

Nintendo Wiimote and official expansions 

Motion Capture Hardware 

PhaseSpace 

NaturalPoint OptiTrack (some versions) 

Microsoft Kinect 

AMTI force plates with serial I/O 

Multimedia Hardware 

PhaseSpace 
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NaturalPoint OptiTrack (some versions) 

Microsoft Kinect 

AMTI force plates with serial I/O 

Table 5: Hardware supported by LSL (source: [35]) 

In the following we provide further details on how LSL: a) interfaces with the sensor devices, 
b) achieves reliable data communication, c) performs the near-time synchronization of 
heterogeneous signals, and d) communicates with the environment of the end-user 
application through event markers. 

3.3  Sensor Interface 

The sensor interface is the lowest layer of the middleware (see Figure 5). Its scope is to 
provide an abstract interface for the main sensor types used in the project – currently Eye 
Tracking, EEG and GSR sensors. This interface is used to connect the middleware with each 
sensors’ SDK with the intention to acquire sensor data, provide configuration facilities, and 
where direct user input is required provide a user interface.  

LSL defines its own generic abstract interface for sensors, based on three main concepts: a) 
Stream Outlets, b) Resolvable functions and c) Stream InLets.  

Stream Outlet is a time series of data which is streamed on the “lab network” defined by 
LSL; the data is pushed into a Stream Outlet sample by sample in the form of chunks, can be 
single channel or multi-channel and formatted in common data types: integers, floats, 
doubles and strings. In addition stream outlets can have attached metadata in XML format, 
which can be used as a kind of header to describe the format and use of a certain stream. 

 

Resolve functions: these allow to resolve streams that are present on the lab network 
according to content-based queries (for example, by name, content-type, or queries on the 
meta-data). The service discovery features do not depend on external services such as 
zeroconf and are meant to drastically simplify the data collection network setup 

 

Stream Inlets: for receiving time series data from a connected Stream Outlet. Allows 
retrieving samples from the provider (in-order, with reliable transmission, optional type 
conversion and optional failure recovery). Besides the samples, the meta-data can be 
obtained (as XML blob or alternatively through a small built-in DOM interface). 

To connect a sensor device to LSL, one has to implement a suitable wrapper (in one of the 
languages supported by LSL, see Section3.2 ) which creates a Stream Outlet object, it 
specifies the number and type of data channels which the sensor supports, and pushes the 
samples generated by the sensor through the Stream Outlet, making them available to 
“clients” in the LSL network. 

We’ll show a very simple example in C++. 

 It starts by including the C++ library header: 
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#include "lsl_cpp.h" 

 Then, we declare a stream Info object which specifies our sensor will be identified as 
“MyEEG”, it is an EEG with 100 Hz sample rate where each sample is composed of 8 
channels, each channel carrying one float (32 bit) value: 

lsl::stream_info info("MyEEG","EEG",8,100,lsl::cf_float32,"myuid"); 

 We create a Stream Outlet object with the properties we just specified in the info 
object 

lsl::stream_outlet outlet(info); 

 We can now stream samples using the outlet 

// Declare a buffer for our sample 

float sample[8]; 

 

// Stream the samples into the outlet 

while (true) { 

 

// fictious function which returns a sample from my EEG device and 

// copies it into our sample buffer  

getSampleFromMySensor(sample); 

 

// Push the sample into the LSL outlet 

outlet.push_sample(sample); 

 

} 

For more details about LSL coding guidelines, see [13]. 

3.3.1   Eye Tracking Wrapper Application for LSL 

LSL already includes wrapper applications or “Connectors” based on the Stream Outlets 
concept for the major ET systems on the market, namely SensoMotoric Instruments’ iViewX 
and iViewNG based systems [69], Tobii [65] and SR Research Eyelink [81]. 
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Figure 8: iViewX Connector Interface 

As an example, the SMI iViewX Connector requires to specify the address and port at which 
the eye tracking server can be reached, as shown in Figure 8. Then by clicking “Link” the data 
will be streamed to the LSL network. A very similar type of connector is available for the 
Tobii systems. 

It is furthermore possible to get a live visualization of the eye tracking data by configuring 
the display window properties (left-top corner coordinates, width and height of the display 
window) and by clicking “Open Display” the gaze data will be visualized as red circle over the 
gray display window. 

The main limitation of such connectors is that they do not allow to calibrate the eye tracker, 
which is assumed to be already calibrated; this is not a real issue if the eye tracker is 
connected to the same PC where LSL is running (as in the suggested setup, see Section 2.3 , 
since it is possible to configure and execute the calibration by directly using the calibration 
SW which is part of each eye tracker SDK. 

In a multi-PC environment the connector could be extended to configure and start a 
calibration process.  

3.3.2   EEG Wrapper Application for LSL 

As in the case of ET, EEG data should be sent to an outlet LSL stream and received by the 
middleware in an inlet LSL stream. Both the devices for the heavyweight and lightweight 
configuration have the functionalities to send their data trough the LSL outlet stream. 

Since the heavyweight device, i.e. the BEPlusLTM amplifier by EN Neuro, was not already 
compliant with LSL a dedicated SDK was developed in order to easily integrate that device 
with LSL, as part of deliverable D2.1 [36] (see Section 5.3.1 of D2.1). At a later stage of the 
project, the EPOCH device will be also directly supported to connect with LSL.  
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EEG sensors do not need a calibration routine, as they provide low level electrical signals 
which need to be interpreted by complex algorithms. Such event generating algorithms are 
placed much higher in the SW stack. However EEG sensors require an impedance-check 
procedure at the beginning of a session to ensure that the electrical connection is working 
properly. Thus, the impedance-check procedure will be part of the EEG interface for LSL. 

3.3.3   GSR and Other Sensors Interface Layer 

Currently there is no supported GSR interface in the standard LSL distribution, however the 
mechanism to implement one using the Stream Outlets is the same as for ET and EEG 
sensors. It is actually easier since they do not require any configuration option. 

Thus, the same approach adopted for the EEG interface layer is exploited also for the GSR 
module. Given that the selected device (i.e. the Shimmer3 GSR+ [77]), was not compatible 
with LSL, a dedicated SDK was developed to collect the bio-measurements data and send 
them towards LSL. See section 7.3 of deliverable D2.1 [36] for a detailed description. 

3.4  Data Transport 

The role of middleware in a network of heterogeneous sensors and computers is to provide 
a transport layer to collect the data being generated on the PCs where the sensors are 
attached and deliver it to the computer(s) where the user applications are running – as 
efficiently as possible while ensuring that no data gets lost somewhere on its way in the 
network. 

LSL offers network transport functionality in a completely transparent manner. Stream 
Outlets and Inlets can be created on any PC in a local network and the user does not have to 
specify server addresses or network protocols. Data will be streamed from an Outlet to an 
Inlet in exactly the same way whether both components reside on the same machine or on 
two different PCs connected by a network. 

LSL uses several mechanisms to ensure maximum reliability even in case of temporary 
network failures: 

 Although UDP is used for discovery due to efficiency reasons, data samples are 
streamed only using TCP which is a protocol that ensures in-order, guaranteed 
delivery of the data  

 Data is buffered both at the sender and receiver side so that a copy of it exists in case 
of intermittent network failures 

 It provides automatic failure recovery even in case of application or computer crash 

For more details see [14]. 

3.5  Sensor Synchronization 

In a system comprising a network of heterogeneous sensors, possibly connected to multiple 
PCs on a local network, it is necessary to synchronize all sensor data on a common time axis 
in order to fuse the data to detect events. As already mentioned in Section 2.3 , in this 
scenario we will generally have to consider a number of factors: 
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 Sensor sampling frequency: in general will differ among the different sensors, in 
dependency with the characteristic frequency spectrum of the measured signal, so for 
example typical values can be 30Hz for the ET, 250Hz for EEG, and 1Hz for GSR. 

 Clock offset: the time scale of each sensor in general will have a different starting point.  

 Clock drift: even if the clock offset were synchronized, multiple clock generators in a 
distributed system tend to drift apart from one another as a function of temperature, 
clock generator technology and other environmental variables. 

Figure 9 demonstrates how two signals can be de-synchronized in a dual-PC setup.  

  

(a) (b) 

Figure 9: (a) System setup comprising an ET and an EEG sensor. (b) Corresponding 
representation of the sensor data streams – ET (blue), EEG (gray) with different sampling 

frequencies and offsets. If the timeline were synchronized, sample ETn would correspond to 
sample EEGm.  

3.5.1   Hardware Synchronization 

Conceptually, the easiest and most precise way to synchronize a set of sensors is to use HW 
synchronization. Ideally this can be done by using a single clock generator to simultaneously 
trigger the signal acquisition of all sensors. This approach is however often not feasible, 
because it would require all sensors to be already designed to accept a certain external clock 
signal, or to specifically design a set of sensors for this specific purpose. Next to this, there 
are also some practical limitations: 

 Camera based systems using CMOS sensors such for example ET cannot run at their 
maximum frame rate when the image acquisition is triggered by an external signal, 
because this prevents the overlapping of image acquisition between frames, which 
happens when the cameras have their own clock and work in Free Running Mode (see 
Figure 10). 
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 Even with a common clock source, if the transmitting lines are long enough and have 
different lengths, clocks will drift apart at the destination. This drift will be a function of 
line length, material, temperature and other factors influencing the travelling velocity of 
electrons in the medium. 

 Currently no eye tracking system on the market allows the image capture to be directly 
triggered by an external signal. 

 

Figure 10: “Free running mode” image acquisition in a CMOS sensor with rolling shutter 
(source [15]). Since the time of the acquisition of contiguous frames in a sequence can be 
partially overlapped, the highest achievable frame-rate is higher than in triggered image 

acquisition. 

3.5.2   Hardware Synchronization with External Trigger Events 

A popular way to achieve HW based synchronization between EEG and ET systems is to use 
external trigger event markers. 

This is achieved by having one device send the other(s) a series of “event markers”, typically 
using a TTL logic (Transistor-Transistor Logic) electrical signal [16] (see Figure 11 and Figure 
12) using an LPT (parallel port) interface. One example of this could be a marker signalling 
the occurrence of an event such as the beginning of an experiment, or the display on a 
monitor of a certain stimulus. The receiving device will then sample the signal change (from 
LOW to HIGH or a pulse like transition LOW-HIGH-LOW) in its own clock scale (associating it 
with its own timestamp) and record it in its own data stream. 

By matching common events (using such markers) among the different sensor data streams, 
it is then possible to synchronize them, for example by shifting (clock offset), scaling (clock 
drift) and resampling (different sampling frequencies) one time scale with respect to the 
other, so that all markers appear at the same time on all data streams (see also Figure 9). 
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Figure 11: Example of TTL logic signal: the HIGH state is usually defined as having a voltage 
above 2V, while the LOW state has a voltage below 0.8V [17]. 

 

Figure 12: An EEG device sending event markers using TTL signals to an ET device 

Another popular arrangement is to use a dedicated device (such as the Cedrus StimTracker 
[18]) to generate event triggers which are relayed to all the different sensors. These triggers 
can be activated by an additional type of environmental signals (Figure 13). 

 

Figure 13: Example of one dedicated device generating external synchronization markers. 

Such signals can be activated based on audio or light levels exceeding a certain threshold, 
corresponding to the onset of visual or auditory stimuli in the experiment. Another useful 
possibility is then for a stimulus presentation software starting an experiment or showing a 
particular stimulus to be able to communicate with the StimTracker using the USB interface 
and this generating a TTL signal marker which is then passed to the EEG and ET. 

HW based synchronization using event markers can be very accurate and it is the de facto 
standard in research using multimodal biological sensors such as EEG and ET. However its 
main limitation is that by its own nature can only be performed offline at the end of an 
experiment (need to parse data streams to locate matching events, shifting, scaling and 
resampling timeline(s)) and this is not suitable for real-time human-computer interaction 
projects such as MAMEM. 
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3.5.3   Software Synchronization 

The simplest form of SW synchronization is having all sensors connected to a single PC, with 
the PC generating a timestamp using its own central clock every time a new sample arrives. 
If the sensors are connected to a network of PCs however, it is generally impossible to keep 
all “physical clocks” of the different PCs running at the same frequency [4], so the 
timestamps will drift. 

One easy way to deal with this problem when connected to the internet is to periodically 
update all the clocks using time servers broadcasting Coordinated Universal Time (UTC), 
which is defined to be the mean solar time at 0° degree longitude [2]. Using this method, it is 
possible to achieve a synchronization accuracy of about 1 second, provided that the 
synchronization with the UTC servers is happening on a frequent basis.  

If higher synchronization accuracy is required, an old but still golden standard is the Network 
Time Protocol (NTP) [20]. NTP is standardized, designed to work on unreliable, variable 
latency networks, and it can typically synchronize all computers clocks in a network within a 
few milliseconds of one another, with sub-millisecond accuracy in the best case. It is not in 
the scope of this document to discuss the details how this protocol works, but it is based on 
a client computer sending messages and measuring clock offset and round trip time to a 
number of servers. 

3.5.4   Synchronization Pitfalls 

 

Figure 14: Internal latency of a (ET) sensor 

Even having perfectly synchronized clocks, and depending on the required synchronization 
accuracy (for example, <1ms), there may be additional latencies to be taken into account 
and – when possible – compensate. In particular, sensors which are based on camera 
technology (such as ET) have a chain of internal latencies from the time an event occurs (e.g. 
an eye moves) till the time such event is reflected in the data available through the device’s 
API. 
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Looking at Figure 14, there is a first latency between the time the event occurred (T0) till the 
time an image has been acquired and sent to the processing CPU (T1) where it can receive a 
timestamp. Such time includes the exposure time of the image sensor and the transfer time 
of the image from the camera to the CPU. It is usually related to the sampling frequency of 
the device, for example on a 250Hz ET device, it can take 4-5ms to capture and transfer an 
image. 

After that, the image is to be processed by the CPU, this time will also be dependent on a 
number of factors including the speed of the CPU, the size of the image, the complexity of 
the processing algorithms etc. This time is typically in the order of magnitude of a few 
milliseconds. Finally, the data will be made available through the API (T2) and in case of 
synchronization middleware such as LSL, it will receive a timestamp which will there be 
assumed to be the time when the event happened (T0) but in reality will have added the 
internal latency (T2 - To), which in many cases can be 10ms or more. Some ET systems will 
provide through their API for each sample the timestamp (T1) when the corresponding image 
was received; this reduces the hidden latency but does not completely eliminate it. 

An additional problem to consider when timestamps are being generated by a PC is 
timestamp jitter. Even if a sensor acquisition process is driven by an isochronous clock 
generation (which is also just an abstraction, as we know that all clock generators will drift 
due to environmental conditions, in particular temperature), the delivery and timestamping 
of samples on a PC will also be affected by a number of events of non-deterministic nature 
(unless a real-time Operating System is being used) dependent on temporary load of certain 
computer’s resources such as the CPU, the bus used to transfer the data into memory, the 
main memory itself, etc. 

The result is “noise” on the timestamps which is just being added by the PC itself and which 
has to be taken into consideration; if it is known however that the sample source is 
(approximately) isochronous and that the delta between two successive timestamps is fixed; 
it is then possible offline to filter the timestamps to correct or reduce jitter, if the application 
requires it. 

Finally, camera based sensors used in real-time applications can occasionally drop samples. 
This can happen again due to temporary unavailability of PC resources, so that if an image 
frame is not delivered or processed on time (i.e. within the allocated time interval which is 
determined by the device’s frame rate) then the corresponding data sample may be dropped 
to prevent the chain of delays in the subsequent samples. 

3.5.5   Synchronization using LSL 

LSL provides built-in software synchronization using a protocol which is similar to the NTP 
algorithm. For each sample streamed using an LSL Steam Outlet, it is possible to specify an 
own timestamp, if the user wants to use its own synchronization means, otherwise LSL will 
provide automatically a timestamp. 

In case of internal sensor latencies as explained in Section 3.5.4  , if they’re known it is 
possible to specify them in a header which is attached to the stream Outlet [21]: 

<desc> 

<synchronization> # information about synchronization requirements 
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<offset_mean>  # mean offset (seconds). This value should be 

subtracted from XDF timestamps before comparing streams. For local LSL 

generated events, this value is defined to be zero. 

<offset_rms>  # root-mean-square offset (seconds). Note that it 

is very rare for offset distributions to be Gaussian. 

<offset_median>  # median offset (seconds). 

<offset_5_centile> # 95% of offsets are greater than this value 

(seconds) 

<offset_95_centile> # 95% of offsets are less than this value 

(seconds) 

<can_drop_samples> # whether the stream can have dropped samples 

(true/false). Typically true for video cameras and video displays and 

false otherwise. 

</synchronization>  

</desc> 

In particular, the offset_mean parameter is subtracted by each samples’ timestamp. If 
the data is being recorded offline using the provided XDF format, LSL offers an XDF importer 
which then takes care of correcting for clock offset, missing frames (if the stream has been 
marked as can_drop_samples), resampling and jitter correction. If however the 
streams are being used online as in our case, it has to be considered that the timestamps of 
a given stream are delivered without adjustments, that is, using the clock of the computer 
that originally generated them. 

LSL provides a very simple way to correct for the clock offset between the sender PC and the 
one which is receiving the data. Supposing that the receiver application has created a stream 

Inlet object for a certain sensor data stream (let’s call this eegInlet), the current time 
offset between the sender PC’s and the receiver PC’s clocks, is automatically determined by 
LSL using an NTP-like algorithm, and is returned by simply calling the function: 

// the time_correction() function returns the current clock offset for a 

// given stream 

double eegStreamClockOffset = eegInlet.time_correction(); 

It is then sufficient to add this offset to the received samples timestamps to have them 
synchronized with the receiver PC’s clock, with one caveat. As already mentioned, clock 
offsets do not stay constant as the physical clocks tend to drift apart. It is then necessary to 
periodically call the time_correction() function for each stream to keep the offset up 
to date. 

Even though the preferred setup of a single PC (see Section 2.3 ) minimizes the chance of 
having de-synchronized signals, it was deemed important for the MAMEM architecture to 
cover all different types of platform configuration and accommodate for network-oriented 
setups. 

3.6  Event Generation Interface 

As already mentioned in the introduction, MAMEM’s software architecture consists of 
various different layers and modules. However, in order for these layers to operate 
harmonically it is important to have a joint awareness of the events that are taking place in 
either of the different layers. For instance, the applications layer needs to know that the EEG 
and ET signals have become available to the system so as to change the interface for regular 
mode to MAMEM mode (i.e. interface operated through eyes and mind). Similarly, in a BCI 
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where the mental commands are facilitated by the steady-state visual evoked potentials, the 
Interaction SDK needs to know that the front-end application is currently in the state of 
presenting the different flickering boxes to the user and awaits the classification response 
from the system. Knowing this, the Interaction SDK could start the classification processing 
algorithm, which is typically in idle state to save computational resources. These are just two 
examples of the abstract requirement for communication across layers that can be 
expressed as follows:  

“When a certain event takes place in one of the layers the other layers need to know about 
it so as to adopt their functionality accordingly” 

Going back to our middleware there are two types of events that need to be handled by this 
layers:  

a) The first has to do with the fact that that a signal stream (i.e. EEG, ET or GSR) is currently 
served by the middleware and can be acquired by the other layers of the architecture. In 
order to communicate this fact the middleware generates an event that indicates the 
existence of a signal stream in the local network that can be resolved by the other layers 
to obtain the signal stream (see Section 3.6.1   

b) The second has to do with the need for the middleware to know the start and end point 
of an event that is taking place in another layer (usually the applications layer), so as to 
mark the segments of the signal streams that correspond to this event. In order to 
receive and transmit this kind of markers the middleware relies on the string stream 
event generation interface that is able to communicate strings (e.g. SSVEP-Start or 
SSVEP-End) at irregular sampling rate (as opposed to the signal streams where the 
sampling rate should be regular). See Section 3.6.2  for the description of this interface.  

In the following we provide more details about the aforementioned interafaces. 

3.6.1   Signal Stream Event Generation Interface 

Here we are going to present how an event generation algorithm object can access the 
sensor data provided by the LSL network. As in Section 3.3 we introduced stream Outlets to 
send data using LSL, the dual concept on the receiving side are stream Inlets (see Section 3.3 
.  

When a stream outlet is being served in the local network through LSL (see Section 3.3  a 
corresponding event is generated with the intention to allow this outlet to be discovered by 
the other modules.  

Then, an application which wants to use sensor data being streamed on the LSL network, has 
to first retrieve what are the currently available streams. If we want to find out a list of all 
streams currently active on a network, LSL provides the so-called Resolve Functions (see 
Section 3.3 , which return a vector of stream_info objects: 

// discover all streams on the network 

vector<lsl::stream_info> results = lsl::resolve_streams(); 

A stream_inlet is then created by passing a stream_info object to its constructor: 

// Create a stream inlet associated with the first stream descriptor  

// received 

lsl::stream_inlet inlet(results[0]); 
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Data can then be pulled by the inlet sample by sample: 

while (true) { 

// get an 8 channel sample, each channel represented by a float 

 float sample[8]; 

 double ts = inlet.pull_sample(sample,8);  

// the returned ‘ts’ is the sample timestamp in the local clock 

} 

It is also possible to search (or “resolve”) for streams whose descriptor matches specific 
properties, so for example if a stream is annotated (at the time of generating the outlet – 
see Section 3.3 ) to be an EEG stream, or using a specific name, or manufacturer, etc.: 

// discover all EEG streams on the network 

vector<lsl::stream_info> eegInfos = lsl::resolve_stream(“type”,”EEG”); 

LSL provides an extensive documentation in its Wiki [22]. 

3.6.2   String Steam Event Generation Interface 

Apart from the events that relate to the availability of a stream signal, LSL supports also the 
functionality of sending and receiving streams of strings at irregular sampling rates. As 
already mentioned, these strings could serve as markers indicating the start/end point of an 
event that is taking place in another layer (e.g. the applications layer). Below we provide the 
functions supported by LSL for sending and receiving a string stream.  

Sending a string stream: 

The following example offers a 1-channel stream which contains strings. The stream has the 
"Marker" content type and irregular rate. First we need declare the type of markers: 

char *markertypes[] = {"Test", "Blah", "Marker", "XXX", "Testtest", 

"Test-1-2-3"}; 

Then, we need to declare a new streaminfo (name: "MyEventStream", content type: 
"Markers", 1 channel, irregular rate:  

info = 

lsl_create_streaminfo("MyEventStream","Markers",1,LSL_IRREGULAR_RATE,cft

_string,"myuniquesourceid23443"); 

Subsequently, we need to make a new outlet (chunking: default, buffering: 360k markers): 

outlet = lsl_create_outlet(info,0,360);  

Finally, we can send random marker streams with the following code: 

while(1) { 

  /* wait for a random period of time */ 

  endtime = ((double)clock())/CLOCKS_PER_SEC +      

(rand()%1000)/1000.0; 

  while (((double)clock())/CLOCKS_PER_SEC < endtime); 

  /* and choose the marker to send */ 

  mrk = markertypes[rand() % 

(sizeof(markertypes)/sizeof(markertypes[0]))]; 

  printf("now sending: %s\n",mrk); 

  /* now send it (note the &, since this function takes an array 

of char*) */ 

  lsl_push_sample_str(outlet,&mrk); 
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 } 

 
Receiving a string stream: 

In order to receive the stream, we first need to resolve the stream of interest:  

/* result array: info, array capacity: 1 element, type shall be EEG, 

resolve at least 1 stream, wait forever if necessary */ 

lsl_resolve_byprop(&info,1, "type","EEG", 1, LSL_FOREVER); 

Make an inlet to read data from the stream: 

/* buffer max. 300 seconds of data, no preference regarding chunking, 

automatic recovery enabled */ 

inlet = lsl_create_inlet(info, 300, LSL_NO_PREFERENCE, 1); 

Subscribe to the stream: 

/* automatically done by push, but a nice way of checking early on that 

we can connect successfully */ 

lsl_open_stream(inlet,LSL_FOREVER,&errcode); 

Display the data obtained from the stream: 

for(t=0;t<100000000;t++) { 

  /* get the next sample form the inlet (read into cursample, 8 

values, wait forever if necessary) and return the timestamp if we got 

something */ 

  timestamp = 

lsl_pull_sample_f(inlet,cursample,8,LSL_FOREVER,&errcode); 

 

  /* print the data */ 

  for (k=0; k<8; ++k) 

   printf("\t%.2f",cursample[k]); 

  printf("\n"); 

} 

More details can be found at [22]. 
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4 Interaction SDK 

As mentioned in the introduction, the requirements that have been set in the Description of 
Actions [5] to motivate our decision on the Interaction SDK are: a) transparent, in terms of 
the communication with the middleware, b) rich, in terms of the supported methods and 
processes, c) extendable, in terms of adding more methods and processes, and d) easy to 
access, from the front-end applications. In the following we compare some of the most 
promising open source frameworks for developing BCI applications. 

4.1  Industry Standards 

In comparing the existing frameworks, our intention has been to evaluate the 
appropriateness of each solution based on the aforementioned criteria. Table 6 summarizes 
the results of this comparison, as inferred from [37]: 

Platform 
Transparency with 

middleware 
Richness in 

functionalities 
Easy of use 

Modularity/ 
Extensibility 

On-line 
processing 

BioSig 
[38]  

No real-time hardware 
or computation 

support 

Large amount of 
functionalities for 
statistic and time-

series analysis 

Not very user-
friendly (No 

GUI) 

Complicate code, 
not very modular 
(MATLAB toolbox) 

Offline 
analysis 

only 

BCI2000 
[39] 

Supports a wide range 
of acquisition 

hardware (~19 
systems) 

Lack of advanced 
signal and 

machine learning 
algorithms 

Fairly easy to 
use (solid 

documentation, 
big community) 

Fairly modular 
(programmed in 

C++) 

Supports 
real-time 

acquisition 
and 

analysis 

OpenViBE 
[10] 

Supports a broad 
range of acquisition 

hardware(~15 
systems), 

communicates with 
LSL.  

Focus on basic 
signal processing 
building blocks 

(weaker support 
for complex 

information flows) 

Very user-
friendly design 
(allows visual 
programming 
and dataflow 

programming) 

Implemented in 
modular C++ but 
relatively hard to 

extent due to 
complex 

framework 

Supports 
real-time 

acquisition 
and 

analysis 

BCILAB 
[40] 

Relatively little native 
support for acquisition 
systems (~5), though it 

can tie-up into 
middleware 

frameworks like LSL. 

Largest collection 
of BCI algorithms 

from signals 
processing and 

machine learning 

Fairly easy to 
use (by 

following the 
provided 

documentation) 

MATLAB-based, 
complex internal 

framework, 
requires expertise 

to extend. 

Supports 
real-time 

acquisition 
and 

analysis 

Table 6: Comparing some of the most prominent open source frameworks for making BCI 
applications. (source: [37]) 

Apart from the aforementioned frameworks that have been considered as the most 
prominent, the full landscape of BCI frameworks should also refer to the following: 

 FieldTrip: Popular MEG/EEG toolbox for online features 

 xBCI: New C++ framework focused on online operation, GUI-centric, cross platform. 

 BF++: Mature BCI framework providing offline analysis and modelling with UML and 
XML. 
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 TOBI: Protocol suite for BCI interoperability and data acquisition 

 PyFF: Python-based BCI stimulus presentation system.  

 BBCI: In-house, very comprehensive MATLAB-based system 

 BCI++: Relatively new C++ system, focused on human-computer interaction and virtual 
reality (still in a rather immature state). 

In deciding about the most appropriate framework to base the Interaction SDK of MAMEM 
we have only considered the frameworks presented in Table 6, since they are considered as 
the most mature and well-maintained. Despite its extensive set of methods for statistics and 
time-series analysis, BioSig was considered inappropriate for our purposes dues to its lack 
for making transparent the communication with the underlying middleware (or hardware), 
as well as its lack of support for real-time analysis. On the other hand, our decision to not 
follow the option of BCI2000 was primarily driven by the lack of support for advanced signal 
processing algorithms, as well as it’s moderate performance on user-friendliness. Finally, in 
selecting between BCILAB and OpenViBE, both of them are able to communicate with our 
middleware (i.e. LSL), as well as to support real-time acquisition and analysis. In addition, 
both of them are rather hard to extent, while BCILAB appears to be much richer in terms of 
the already implemented functionalities. However, our decision to favour OpenViBE for 
becoming the basis of MAMEM interaction SDK was its ability to support visual and dataflow 
programming in a very user-friendly fashion, which makes is accessible even to non-experts 
(e.g. clinicians). Recalling that one of MAMEM’s main objectives has been to offer a 
framework for allowing developers and interface designers to build their own multi-modal 
interaction applications, the philosophy behind OpenViBE was considered to more 
consistently reflect the rationale of MAMEM. Finally, we should also mention that OpenViBE 
is written in C++ (which is in accordance of what has been considered as best practice in 
Section 2.2 runs on both Windows and Linux and it can smoothly communicate with LSL.   

4.2  OpenViBE 

OpenViBE [41] has been implemented with the purpose of designing, testing and using 
brain-computer interfaces. It supports real-time processing of brain signal and it can be used 
to acquire, filter, process, classify and visualize brain signals in real time. OpenViBE is free 
and open source and works on Windows and Linux operating systems. 

The main application fields of OpenViBE are medical (assistance to disabled people, real-
time biofeedback, neurofeedback, real-time diagnosis), multimedia (virtual reality, video 
games), robotics and all other application fields related to brain-computer interfaces and 
real-time neurosciences. The most interesting characteristic of OpenViBE is that it can be 
used either by programmers, or from people not familiar with programming, such as medical 
doctors, or clinicians. This feature makes OpenViBE particularly attractive for developing BCI 
applications.  

In the following, we provide more details about OpenViBE in terms of the offered processes 
and features, the list of supported hardware devices, as well as the interfaces that are used 
to communicate with sensor devices or any other software that can serve as middleware (i.e. 
LSL).  
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4.3  Visual programming, processing and visualization module 

4.3.1   Visual programming 

In the following we provide a short description of the basic concepts behind OpenViBE as 
provided in [42]. The purpose of OpenViBE is to get data from the acquisition device through 
the Acquisition Server and then send it to one or more Acquisition Clients. In this description 
we will consider the Acquisition Client to be the OpenViBE Designer (i.e. the graphical user 
interface offered by the framework to support visual and dataflow programming). The 
Acquisition Server and the clients (Designers) can be either on the same machine or different 
machines on the same network, or any combination of these. The diagram of Figure 15 
explains these possibilities: 

 
Figure 15: Diagram explaining the network topology of OpenViBE 

The first step that needs to be performed in order to use OpenViBE is to run and setup the 
OpenViBE Acquisition Server. Upon launching this server the graphical window of Figure 16 
allows you to setup the server. There are three main settings that need to be configured for 
setting-up the Acquisition server: a) Driver, which corresponds to the software module that 
takes care of the communication between OpenViBE and the sensor device, or the 
middleware (see Section 4.4 ), b) Connection port, which specifies the port that will be used 
by the Acquisition Server to stream the generated signal, and c) Sample count per sent block, 
which determines the number of samples composing a chunk received from the stream. 
Further configuration options can be provided through the “Driver Properties” and 
“Preferences”. 

 

Figure 16: OpenViBE Acquisition Server Configuration Window 
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The second step is running the OpenViBE designer. Upon launching the designer the 
graphical window of Figure 17 appears. There are two main elements in the Designer’s 
window: a) the scenario window on the left, and b) the box algorithm list on the right. The 
scenario window is used to create the signal processing chains assembled from the 
processing boxes that are picked from the list on the right.  

 

Figure 17: OpenViBE designer interface under Windows 7 

The most fundamental of the available boxes is the Acquisition Client. The role of the 
Acquisition Client is to get the data from Acquisition Server and pass it on to the rest of the 
processing chain. There are two main configuration options that need to be set for the 
Acquisition Client (as shown in Figure 18): a) The hostname of the Acquisition server, and b) 
the port that is used by the Acquisition Sever to stream the generated signal.  
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Figure 18: Configuration window for the Acquisition client 

By properly configuring the Acquisition Client the signal coming from the sensor device (or 
though the middleware) is now available for further processing. In order to do this, we can 
pick one of the processing boxes that lie on the right panel of the OpenViBE Designer. There 
is already a rather complete list of methods (see Section 4.3.2  ) that can be used for various 
purposes. The most trivial of these methods is to simply display the signal. In order to do 
this, the Signal Display box should be dragged into the scenario. This box is able to display 
the signal it gets on the input. Thus, if we connect the Acquisition Client box with the signal 
display box, as show in Figure 19, we have an example scenario that takes the signal from 
the sensor device and displays its waveform in the OpenViBE designer. In order to do this, 
we need to go back in the Acquisition Server and click on the Connect and Play buttons, so as 
to start sending the data over the network and also press the Play button in the designer in 
order to get the signal displayed.  

 

Figure 19: Minimal scenario of having a signal acquired by the device and displayed by the 
designer. 

4.3.2   Processing boxes 

As we have seen in the OpenViBE Designer, the processing scenarios are made of boxes that 
are dragged and dropped in the scenario panel. These boxes are used to implement all the 
different functionalities offered by the framework, ranging from signal acquisition and 
network Input/Output operations, all the way to signal processing, classification and 
visualization. Indeed, Table 7 presents the full list of processing boxes as provided in [43].  

Acquisition and network IO Acquisition client 
LSL Export 
LSL Export (Gipsa) 
OSC Controller 
TCP Writer 

Classification Classifier processor 
Classifier trainer 
Voting Classifier 

Data generation Channel units generator 
Noise generator 
Sinus oscillator 
Time signal 

Evaluation  General statistics generator 
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Classification  

 Classifier Accuracy Measure 

 Confusion Matrix 

 Kappa coefficient 

 ROC curve 

Feature extraction  Feature aggregator 

File reading and writing  SharedMemoryWriter 
Signal Concatenation 
BCI2000  
Brainamp  
CSV  
EDF  
GDF 
OpenViBE 

 Electrode localisation file reader 

 Generic stream reader 

 Generic stream writer 

Scripting  Lua Stimulator 
Python scripting 

Signal processing Averaging: 
 Epoch average 
 Signal average 

Basic: 
 AutoRegressive Coefficients 
 Channel Rename 
 Channel Selector 
 Crop 
 Downsampling 
 Epoch variance 
 Hilbert Transform 
 Identity 
 Matrix Transpose 
 Min/Max detection 
 Quadratic Form 
 Reference Channel 
 Signal Decimation 
 Signal Differential/Integral 
 Simple DSP 
 Stream Synchronization 

Connectivity: 
 Connectivity Measure 

Denoising: 
 EOG Denoising 
 EOG Denoising Calibration 

Epoching : 
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 Stimulation based epoching 
 Time based epoching 

Filtering: 
 CSP Spatial Filter Trainer 
 Common Average Reference 
 Modifiable Temporal filter 
 Regularized CSP Trainer 
 Spatial Filter 
 Temporal filter 
 xDAWN Spatial Filter Trainer 

Independent component analysis: 
 Independent component analysis (FastICA) 

Spectral analysis: 
 Frequency Band Selector 
 IFFT 
 Spectral analysis (FFT) 
 Spectrum Average 

Statistics : 
 Univariate Statistics 

Wavelets: 
 Discrete Wavelet Transform 
 Inverse DWT 

Windowing: 
 Windowing functions 

Stimulation   Clock stimulator 
 Keyboard stimulator 
 P300 Identifier Stimulator 
 P300 Speller Stimulator 
 Player Controller 
 Run Command 
 Sign Change Detector 
 Sound Player 
 Timeout 

Streaming   Signal Merger 
 Stimulation Voter 
 Stimulation multiplexer 
 Stream Switch 
 Streamed matrix multiplexer 

Visualisation Basic: 
 Level measure 
 Matrix Display 
 Power spectrum display 
 Signal display 
 Time-frequency map display 

Presentation: 
 Display cue image 
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 ERP plot 
 Graz visualization 
 P300 Identifier Card Visualisation 
 P300 Magic Card Visualisation 
 P300 Speller Visualisation 

Topography: 
 2D topographic map 
 3D topographic map 

Volume: 
 Voxel display 

Table 7: List of processing methods available in OpenViBE (source: [43]) 

It is evident from Table 7 that OpenViBE covers the full spectrum of methods that are 
necessary to implement a BCI application. Apart from the typical modules of signal 
processing, feature extraction and classification, it also offers functionalities related to 
Stimulation and Visualization. Based on the above, our intention with MAMEM Interaction 
SDK is to make full use of what has been already implemented in OpenViBE and extent when 
necessary with MAMEM-specific functionalities.      

4.3.3   Extending OpenViBE with new Boxes 

As already mentioned, our goal within MAMEM is to rely on what has been already 
implemented in OpenViBE and extent when necessary with MAMEM-specific processes and 
methods. The creators of OpenViBE have made available extensive documentation on how 
to extent their framework with new boxes [44], how to ensure the communication between 
the different boxes through messages [45] and how to make these boxes available in the 
OpenViBE Designer [46]. Our intention is to rely on this documentation for incorporating the 
MAMEM-specific functionalities into the OpenViBE framework. 

4.4  Supported acquisition devices 

Based on its creators, OpenViBE supports over 30 acquisition devices (report up to Oct. 
2015) [47]. By using the interface of the Acquisition Server we can switch between any of the 
supported EEG devices without the need to do any modification in the processing chain. 
Table 8 presents the full list of supported hardware devices, as provided by the creators of 
the platform in [47].  

Manufacturer Amplifier Driver Name OS 

ANT 

Neuro ASALAB EEG / ERP 
amplifier 

Either MindMedia Nexus32B or 
TMSi drivers  

Other TMSi derived devices  

Either MindMedia Nexus32B or 
TMSi drivers  

ANT/EEmagine EEGO EEGO 
 

Biosemi Active Two MkI & MkII Biosemi Active Two 
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Manufacturer Amplifier Driver Name OS 

BrainMaster 

Atlantis 

Brainmaster Atlantis and 
Discovery  

Discovery 

Brainmaster Atlantis and 
Discovery  

Brain Products  

V-Amp Brain Products V-Amp 
 

actiCHamp  Brain Products actiCHamp 
 

QuickAmp  

Either MindMedia Nexus32B or 
TMSi drivers  

BrainAmp Series Brain Products BrainAmp Series 
 

All 

Brain Products BrainAmp 
Standard (through BrainVision 
Recorder)  

Cognionics All? Cognionics 
 

CTF/VSM MEG CTF/VSM MEG 
 

EGI Net Amps 300 

EGI Net Amps 300 (through 
AmpServer) 

 

Emotiv 

EPOC (Research Edition / raw 
EEG versions ONLY) 

Emotiv EPOC  

 

gTec 

gUSBamp  g.Tec gUSBamp Gipsa-lab 
 

gMobilab+ 

gTec gMOBIlab+ (mutually 
exclusive with gUSBAmp) 

 

 

LabStreamingLayer 

Any LSL source with 
compatible streams 

LabStreamingLayer (LSL) 
 

mBrainTrain MBT Smarting mBrainTrain Smarting 
 

MCS/MKS NVX MCSNVX 
 

Micromed SD LTM 

Micromed SD LTM (through 
SystemPlus Evolution)  

MindMedia NeXus32 MindMedia Nexus32B 
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Manufacturer Amplifier Driver Name OS 

Mitsar EEG 202 Mitsar EEG 202A 
 

Neuroelectrics Enobio3G Enobio3G 
 

Neurosky 

MindSet NeuroSky MindSet 
 

MindWave NeuroSky MindSet 
 

OpenBCI OpenBCI board OpenBCI 
 

OpenEEG 

MonolithEEG OpenEEG Modular EEG P2 
 

ModularEEG OpenEEG Modular EEG P2 
 

TMSi 

Any TMSI amplifiers including 
Refa, Porti and Mobita, with 
up-to-date API+bios 

TMSi amplifiers 
 

Porti32 

Either MindMedia Nexus32B or 
TMSi Refa32B drivers  

Refa32 

Either MindMedia Nexus32B or 
TMSi Refa32B drivers  

Other devices 

Either MindMedia Nexus32B or 
TMSi Refa32B drivers  

Table 8: Full list of hardware devices supported by OpenViBE (source [47]) 

We can see that all major EEG manufactures appear in the list. However, what is more 
important to notice is the support provided for the LabStreamingLayer. This is essentially the 
most important element of OpenViBE since MAMEM architecture (see Section 7) foresees 
that all bio-signals will arrive to the Interaction SDK through the LabStreamingLayer. 
However, the fact that the chosen framework is able to directly support a wide range of EEG 
manufactures, automatically increases the impact of the SDK extensions that will be 
implemented as part of MAMEM.   

4.5  Discussion 

One interesting remark with respect to the eligibility of OpenViBE for serving as the 
Interaction SDK of MAMEM is the fact that it has been mostly designed and used for 
processing EEG signals (and not other types of bio-signals). Thus, the built-in support for the 
ET and GSR signals that are envisaged in MAMEM is very limited. Despite this fact we have 
still considered that OpenViBE is the best option for our Interaction SDK, due to the 
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following reasons. The transparent communication of OpenViBE with LSL ensures that it will 
be straightforward for us to obtain all different types of signals (i.e. EEG, ET, GSR and Event 
Markers) within the OpenViBE environments in a synchronized mode. Moreover, the 
partners of MAMEM consortium committed in extending the framework with the processing 
boxes that will be necessary to implement the envisaged BCI interfaces. Thus, the choice of 
OpenViBE as the back-bone of MAMEM’s Interaction SDK was deemed the most prominent 
and resource-effective option for the purposes of our project.  
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5 Application Layer 

5.1  Generally established interaction modalities – Eye Tracking 

There are different techniques in the literature for using the eye gaze for interacting with a 
PC, however there are no common framework to interact with eye tracking based interfaces 
in the best manner. Generally the interaction with an eye gaze interface can be made in a 
command or non-command based modes [30]. In the command based interface, gaze is 
used for object selection in the same way as with traditional pointing devices such as mouse. 
In the non-command interface the user’s gaze is recorded and examined to discover the 
user’s attention.  

There are certain difficulties with using eye movements as commands in a human-computer 
dialogue. The behavior of the eye makes it unsuitable to replace manual input devices 
directly with an eye tracker. One characteristic of eye movements is that they are both 
controlled consciously and affected by external events. When using eyes to interact with a 
computer, the eyes are always “on” hence the input is continuous. However the manual 
input devices are active when the user desires them to be. These characteristics make it very 
difficult for the computer to interpret the user’s intentions only from gaze focus. All gaze 
fixations made by the user cannot be regarded as commands. In the research community 
this is called the Midas touch problem. There should be methods for the user to confirm 
that a command should be executed or not. To avoid Midas touch problem it is possible to 
use techniques like: Dwell time, Winks, Extra input device. With dwell time, a selection is 
confirmed after the user has looked at an object a certain amount of time. When using dwell 
time it is important that the response time is sufficient. If the dwell time is too short, wrong 
selection may be made and if it is too long, the user gets frustrated. If a wink is used the 
interface must know if it is intentional or not. A wink with one eye is used to make it possible 
to separate the intentional blinks from the unintentional, which always are made 
simultaneous with both eyes. When the user looks at an object on the screen, the object 
becomes highlighted. No action is performed until the user winks with one eye – then a 
command is executed. Several winks can be joined to make a special command. For example 
a wink with left eye followed by a wink with right eye can imply “page up” in a word 
processor. The use of a combination of eye and hand for controlling a user interface may be 
the best option in most situations. This makes the use of an extra input device necessary and 
thus the technique is not an option in a purely gaze based interface.  

An important aspect of interaction is when the screen interface should include a cursor that 
follows the user’s gaze focus. If calibration, accuracy and speed of the eye tracker would be 
perfect, no feedback would be needed, since the user knows where he is looking. Cursor is a 
way of feedback; it shows the user where his gaze focus is, according to the computers 
interpretations. But there are also disadvantages with the use of a cursor in an eye gaze 
interface. If there is a flaw in the calibration, the cursor will be shown displaced from the 
user’s real gaze focus. The user’s gaze will then be drawn to the cursor, which becomes 
further displaced. An alternative to the use of a cursor is to highlight the items that the user 
is focusing on.  

Another popular modality is gaze added interface when the eye tracker is used to 
complement the manual input devices like mouse or keyboard. In this kind of interface, the 
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problems with gaze accuracy and Midas touch can be solved in different ways. A command 
can be confirmed by pressing a button. A button on the keyboard or one of the mouse-
buttons, called “the gaze-button”, can be used for this purpose. Jacob et al. proposed an 
approach where both dwell time and a gaze-button works in parallel [27]. The user can then 
choose the interaction technique that he prefers. If interaction with dwell time is regarded 
as too slow, a command can instead be executed by pressing the gaze-button. Zhai et al. [28] 
considered that the human visual perception channel should not be loaded with a motor 
control task, like selecting or moving an object. To solve this problem they developed a 
method MAGIC pointing – Manual And Gaze Input Cascaded pointing. The technique is 
based on the idea that pointing and selecting should be manual tasks; while at the same 
time make use of the benefits with eye control. The speed of the eye makes it appropriate to 
use for fast movement of the pointer. In this interface the pointer is “warped” to where the 
user fixates his gaze. If the fixation is close to an object, fine adjustment is made with a 
manual input device.  

Using these interaction methods, several applications have been developed in the eye gaze 
community, since the interest for applying eye tracking methods grows with technological 
progress and increment of performance and accessibility [29]. The devices are becoming 
sufficiently reliable and affordable to consider their use in real HCI. Many studies are focused 
on appropriate interaction techniques that incorporate eye movements into the HCI in a 
convenient and natural way. In the following we discuss some popular usability application 
scenarios of eye tracking based interaction. 

5.1.1   Eye tracking in assistive technology 

Assistive technology encourages greater independence for people with disabilities by 
enabling them to perform tasks that they were formerly unable to accomplish. Taking into 
account that most of the neuro-disabled patients can move their eyes, this can be useful for 
communication. In a gaze based interface the user does not need to use his hands to interact 
with the computer. The only input device used is an eye tracker and solely the user’s eyes 
control the GUI. This kind of interface is suitable for people with physical disability that 
prevents them from interacting with their hands. It is also a good option if the space 
available does not allow a keyboard or mouse to be used. Instead of using a keyboard the 
user can write by using an eye controlled graphical keyboard displayed on the screen. 

Eye tracking can be used together with a computer to select a word from a menu. This 
device should be used by patient for a face to face conversation or a remote message sent 
via communication network. Figure 20 presents an example of such a system [24], where the 
keywords are selected by patient using eye tracking technique. A camera mouse can be used 
to move a cursor on a computer screen and to browse a menu for suggestive pictogram 
selection [25]. The keywords collection is organized as a tree structure having wide and short 
topology. The breadth first traversal method is suitable for keyword searching and for an 
easy and fast comeback to the upper level “Go back” images are placed at the right and left 
limits. An updated version of this communication system uses an eye tracking mouse (ETM) 
system using video glasses and a robust eye-tracking algorithm [26]. The validation of the 
usability and reliability of the proposed system was done by experimental procedure 
involving voluntaries and patients in a neurologic emergency clinic. 
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Figure 20: System communication for people with disabilities (Asistsys) 

In the Eye gaze systems such as PRC Accent [68], myGaze [70] with Grid 2 software [63], 
Tobii Dynavox [64], a user can operate the system by looking at rectangular keys or cells that 
are displayed on the control screen. Through visual activation, the array of menu keys and 
exit keys allow the user to navigate the software independently. Through this eye tracking 
technology, users can operate lights and appliances remotely, control infrared devices such 
as televisions and stereos. For more sophisticated computer access there are other systems 
from, among others, SensoMotoric Instruments [69], LC Technologies [67], and Eye Tech 
[66]. However, following Medicare guidelines, people enrolled in hospice or living at an 
assisted living facility are sometimes not eligible for communication devices. For those going 
down the do-it-yourself route, there are new cost effective devices such as The Eye Tribe 
[71] which potentially enables eye control on some mobile devices. The Eye Tribe tracker is 
currently a development unit intended for developers only and cannot be used 
commercially; however it is supported unofficially by some open source software [72]. The 
EyeWriter Project [73] is a low cost, open source eye-tracking system allows patients to draw 
on a tablet using just their eyes. Vision Key [74] is one of the latest eye controlled 
communication that enables users to type and talk with their eyes. The system gives the 
users a voice by enabling them to control a speech synthesizer in the Vision Key unit or on 
the computer by looking at the screen. Users look at a specific word, letter or character on 
the chart in front of their eye and ‘type’ by holding their gaze until a selection is confirmed 
by a green highlight and a beep. 

5.1.2   Eye tracking in e-learning 

In recent years, several technologies like collaborative software, cloud computing, 
screencasting, virtual classroom together with different devices (e.g. mobile devices, 
webcams, audio/video systems) were used to facilitate e-learning development and to 
increase the effectiveness and accessibility of e-learning platforms. Various studies have 
revealed that eye tracking methods could actually improve the functionality and usability of 
e-learning systems: Eye Tracking Analysis in the Evaluation of E-Learning Systems, project, 
AdeLE project or ACM studies [23]. 

In the e-learning platform it is possible to capture learner behavior in real-time using eye 
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tracking methods. The data collected via eye-tracking devices indicates the person's interest 
level and focus of attention. From eye position tracking and indirect measures, such as 
fixation numbers and duration, gaze position, and blink rate, it is possible to draw 
information about the user's level of attention, stress, relaxation, problem solving, 
successfulness in learning, tiredness or emotions. It was revealed that when using eye 
tracking in e-learning, the learner pays more attention to the learning system and also tends 
to have a higher level of motivation [23]. 

5.1.3   Eye tracking in gaming 

Several commercial games have already explored the concept of gaze based interaction for 
better user satisfaction [31]. The most obvious means of eye based interaction is in pointing 
tasks, where the object the user is looking at is considered to be selected. For example, in 
the first-person shooter genre, where the field of view of the player’s avatar is explicitly 
presented to the user. Other games build on the way humans use eye movements to 
manage social situations as a means for an avatar to communicate with the player. For 
example, In “The Legend of Zelda: The Wind Waker”, the player’s avatar indicates that a 
nearby object might be interesting by looking at it [32]. Additionally, some games require 
the player to explicitly control an avatar’s gaze direction. For example, in Figure 21 user’s 
gaze controls his butterfly avatar, moving over a meadow towards the horizon gathering 
flowers. The game is developed at University of Koblenz [82], and explores three different 
gaze control mechanisms. The first approach is a direct interpretation of the gaze 
coordinates as position for the avatar. The second one is a grid-control variation, with 
predefined positions for the avatar. The third approach is a mechanism that supports the 
players by automatically directing the avatar to a position where it will collide with the 
flower. 

Eye movements have also been proposed as a modality for pointing within virtual 
environments. These systems typically correlate the user's gaze into a vector defined by 
virtual world coordinates. Typically, 2D gaze coordinates are retrieved from the eye tracker 
and then projected into the world using simple ray casting. Tanriverdi and Jacob proposed 
that eye movements could be used as an active pointing device for 3D object selection in 
virtual environments presented in a head-mounted display [33]. The eye was tracked in 2D 
in screen coordinates in the HMD. Ray casting was used to select the nearest object 
rendered to the pixel residing at the gaze coordinate, and a dwell time was used to avoid the 
Midas touch effect. 

 
Figure 21: The avatar is controlled by the player’s eyes (Schaugenau) 
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5.2  Generally established interaction modalities – EEG 

5.2.1   BCI Systems and EEG-based interaction modalities 

A general description of a BCI system is provided in Figure 22. BCI is a tool that gives us the 
ability to communicate with the external world without using peripheral nerves and muscles. 
A BCI system translates the recorded electric brain activity into output commands. To 
achieve that, a number of steps are performed, as indicated in Figure 22. The input to a BCI 
system is the electrophysiological brain activity, while the output is the device commands. 
The brain activity is recorded through the use of an EEG system. After that, the analysis of 
EEG signals is performed in order to extract the intended commands of the user.  

 

Figure 22: A general description of a BCI system (reprinted from [48]) 

A BCI system can be characterized in a number of ways based on the different modalities of 
physiological measurement (electroencephalography (EEG) [57], [58]; electrocorticography 
(ECoG) [59]; magneto-encephalography (MEG); magnetic resonance imaging (MRI) [60], [61]; 
near-infrared spectroscopy (fNIRS [62]), mental activation strategies (dependent versus 
independent) and the degree of invasiveness. From the above modalities, the EEG signal is 
the most used because of its noninvasiveness, its high time resolution, ease of acquisition, 
and cost effectiveness as compared to other brain activity monitoring modalities. 
Noninvasive electrophysiological sources for BCI control include event related 
synchronization/desynchronization (ERS/ERD), visual evoked potentials (VEP), steady-state 
visual evoked potentials (SSVEP), slow cortical potentials (SCP), P300 evoked potentials and 
μ and β rhythms. 
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5.2.2   BCI applications based on EEG 

By relying on the aforementioned modalities, a number of BCI applications have been 
proposed in the literature based on EEG signals. For instance, one type of applications 
concerns the interfaces that have been developed for helping people with neuromuscular 
disorders to type letters. The user concentrates on a flashing letter on the computer monitor 
(see Figure 23). This creates an electrical change in the brain which is sent to the computer. 
The computer program translates the brain signal to the letter that the subject was focusing 
by exploiting the time information of the flashing letter and the electrical brain signal. This 
brain signal is called P300 (P3) wave and it is an event related potential (ERP) component 
elicited in the process of decision making [49]. This method has passed into market with 
several companies selling related hardware & software such as the “Intendix Brain-computer 
Interface” [50]. The same idea has also been used for painting. The user can paint by 
focusing on a set of buttons and control is based on the visually evoked potentials 
(VEP/P300) as in the previous case.  

 

Figure 23: BCI application that allows the user to type by staring at flickering letters 

Another typing middleware is the hex-o-speller that has been developed in the context of 
the TOBI project [51]. In this case instead of flashing symbols the software relies on a 
hierarchical class split and visual evoked potentials (focusing). The letters are separated in 6 
classes that are shown in 6 hexagons. An arrow rotates from one hexagon to the other. 
When the subject focuses in one hexagon the arrow expands towards this hexagon and the 
selected class is split further until a single letter class is reached. Once the letter has been 
selected the system goes back to the first screen containing the most probable set of letters, 
and the user reiterates the cycle to select the following letter (see Figure 24). 
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Figure 24: BCI application that allows typing based on Visual Evoked Potentials and a 
hierarchical class split.  

Brain computer interfaces have also been used for allowing the subject to use brain signals 
for navigating in Virtual Reality (VR) worlds, as in the system developed by the Graz Brain 
Computer Interface Lab [52]. The subject imagines that he is moving one of his/her limbs, 
and this brain signal is translated to a command such as “right”, “left”, “button A”, etc (see 
Figure 25). The same lab has also designed an interface for using the “Google Earth” 
program. This is done by allowing the user to select the desired location using the 
aforementioned technique of the “moving limbs”. The same technique has been used also 
for audio processing by selecting the desired soundtrack and applying signal processing 
filters.  

 

Figure 25: BCI application that allows navigating in the virtual world.  

5.3  Native and web browser applications  

What becomes evident from Sections 5.1 and 5.2 is that BCI applications are evolving rapidly 
and try to find their place in the market. What is also interesting is the variety of the end-
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user tools that are used to present the end-user applications. Indeed, the majority of the 
existing BCIs run as native applications (implemented in Java, C++ or some other 
programming language) that have been developed solely for this purpose. However, there 
are also BCIs that run through a web browser or through some other generalized framework. 
This tendency poses the requirement for MAMEM architecture to incorporate an additional 
Layer that would make transparent the communication between the back-end of our system 
(i.e. capturing and translating the signals) and the end-user applications. In addressing this 
requirement, we have incorporated in our architecture the Application-Network Layer 
(described in Section 6) that handles this communication through a client-server scheme 
relying on network sockets. This layer adds a level of transparency between the back-end of 
our system and the front-end applications, ensuring that MAMEM architecture will be able 
to support all different types of end-user applications, independently on whether they run as 
native applications, through a web browser or some other framework.    
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6 Application-Networking Layer  

The purpose of the Application-Networking Layer is to provide the means of communication 
and data sharing between the Application Layer and the rest of the system. The 
communication can be realized in many different ways but most of them rely on the 
underlying operating system, or require the different processes to be running in the same 
computer (see Table 9 for a comparison). Our intention is to have a flexible architecture and 
for that reason we chose to use sockets because they overcome most of the limitations 
described above.  

Method Advantages Disadvantages 

Communication 
with Files/ Named 
Pipes [84] 

1. Doesn’t rely on the OS 
2. Can be established over a 

network 

1. Slow because it utilizes hard disks. 
2. Web applications cannot access 

the file storage of a computer 
directly; a web/file server must be 
also implemented. 

Shared 
Memory/Memory-
mapped file [85] 

1. Very fast. 
 

1. Only native applications may 
access the memory 

2. Processes must be running on the 
same computer. 

System Signals [86] 1. Easy to implement 1. Only specific type of messages 
may be passed (predefined by the 
operating system) 

2. Only native applications are 
supported. 

Sockets [87] 1. Do not rely on the OS 
2. Communication may be 

established by different 
computers over the 
network 

3. Well supported by many 
different programming 
languages 

1. Small latency on data transfer 
 

Table 9: Methods for communication between different software processes. 

Since we are planning to support both native and web applications, we need to use a socket 
protocol that is supported by both platforms. There are many different protocols that can be 
used for native applications, but it is not the same case for web applications. Web 
applications are executed in a “sand box” mode inside a web browser for security reasons. 
This means that they do not have access in the majority of the resources related with the 
operating system, file storage or other APIs outside of the browser environment. The most 
common way for a web application to connect with external applications is to use AJAX calls, 
or the relatively new WebSocket protocol [53]. We chose to go with the WebSocket method 
since it allows bi-directional communication between a web application and a server, 
meaning that a web application can at the same time, send and receive messages to/from a 
server. This is important for our architecture since it is expected that the system listens to 
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the String Steam of Event Markers from the Application Layer and also broadcasts the HCI 
Triggers back to Application Layer. 

For implementing the WebSocket protocol we will utilize the Socket.IO [54] library, a library 
written in Javascript that supports real-time and bidirectional communication between a 
server and its clients. The main reason for choosing Socket.IO, even though it contradicts the 
best practice of using C/C++ suggested in Section 2.2 , is the widespread use and maturity 
featured by this library in implementing a client-server model. Indeed, the library is open-
source, hosted in GitHub [83] and includes many samples that will help on speeding up the 
development. It is separated into a client-side and a server-side library for the node.js server. 
Although it has been designed for communication between web browsers and web servers, 
it can also be used with clients written in other languages such as C++ [55]. Finally, the 
library is supported by the recent versions of all modern browsers, such as Google Chrome, 
Internet Explorer, Firefox, Safari and Opera. 

6.1  Socket.IO client-server model 

In motivating our decision to consider a client-server model (as opposed to a peer-to-peer 
model) for implementing the socket-based communication we have considered the 
following. Although the Socket.IO library supports a peer-to-peer architecture [88]  based on 
WebRTC [89] which allows direct communication between the clients, the technology is not 
mature enough yet and there is a high chance that we encounter problems such as browser 
incompatibility. In addition, we estimate that the benefit of using a peer-to-peer 
architecture (i.e. lower latency for passing the messages especially when streaming large 
amount of data) does not compensate for the increased amount of complexity and 
development effort. For this reason we chose to follow the more established client-server 
model.  

The server will be based on node.js [56], an open-source and cross-platform server-side 
scripting runtime system. There is no limitation regarding what computer the server will be 
run as long as the computer is part of the local network, however the best option is to setup 
the server in a computer with low CPU usage from other sources.  The role of the server is to 
act as an intermediary between the clients and more specifically to: a) Receive messages 
from clients, b) Interpret the messages according to the Messaging Protocol (see Section 6.2  
and c) Send a response message to the appropriate client.  

The clients will connect with the server when they are initialized and then will be able to 
freely send or receive messages from the server. In our case the client applications include a 
plugin for LabStreamingLayer (the Middleware), which is responsible for generating the 
event marker string stream, a plugin for the InteractionSDK that sends the HCI triggers to the 
Application Layer, and the applications themselves which mainly listen for the HCI triggers 
and broadcast the event markers.  

6.2  Messaging protocol 

The messages that will be passed to and from the server will comply with a messaging 
protocol common for all clients that are part of the architecture. It will be a JSON formatted 
string which can be parsed in order to receive the data. When a client connects to the server 
an identifier is assigned to it automatically. The server will preserve a list of all connected 
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client IDs and will transmit it on demand when a client requests it. Each time a client wants 
to send a message to another client it will have to fetch the list of the connected clients from 
the server. A typical flow of communication can be seen in Figure 26. 

 

Figure 26: Typical flow of communication using messages in a client-server model 

When each client is initialized it sends a connect command to the server and receives its ID 
from the server. Before sending a message to another client, the id of the receiver client 
must be requested from the server. An example response containing the list of clients 
connected to the server is the following. 

{ 

  "connected_clients": [ 

    { 

      "type": "webapp", 

      "id": 3 

    }, 

    { 

      "type": "interactionSDK", 

      "id": 1 

    }, 

    { 

      "type": "middleware", 

      "id": 2 

    } 

  ] 

} 

If an application client with an ID=3 wants to send a message to the middleware (ID=2) it 
shall send the message to the id matching the type=”middleware”. A string stream can be 
pushed to the middleware with a message such as the following. 

{ 
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  "senderID": 3, 

  "receiverID": 2, 

  "timestamp": 1448465003, 

  "message": { 

    "numevents": 3, 

    "string_stream": "ssvep_events", 

    "events": [ 

      { 

        "event": "application_init", 

        "timestamp": 1448464782 

      }, 

      { 

        "event": "stimuli_start", 

        "timestamp": 1448464801 

      }, 

      { 

        "event": "stimuli_stop", 

        "timestamp": 1448464805 

      } 

    ] 

  } 

} 

The middleware client will then parse the message and generate a string stream named 
“ssvep_events” containing 3 event markers. 

The same procedure is to be followed when the Interaction SDK wants to send the HCI 
Triggers to the application client. An example message can be the following. 

{ 

  "senderID": 1, 

  "receiverID": 3, 

  "timestamp": 1448467003, 

  "message": { 

    "type": "trigger_command", 

    "command_id": 1 

  } 

} 
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7 Logical view of MAMEM architecture 

The logical view of MAMEM architecture is presented in Figure 27. Our goal with this view is 
to summarize and present in a comprehensive manner how the different Layers, Modules 
and Interfaces fit together in the proposed architecture.  

 

Figure 27: Overall MAMEM Architecture 

This architecture is essentially an elaborated version of the high-level architecture that was 
presented in the DoA [5], see also Figure 4 of this document. There are four main Layers 
constituting our architecture, namely: a) Sensors Layer, b) Middleware, c) Interaction SDK, 
and d) Applications Layer. Each Layer incorporates a number of Modules that are responsible 
for undertaking the tasks that are necessary for MAMEM system to operate. Moreover, in 
order for one Layer to communicate with the other we define a set of Interfaces. These 
Interfaces specify how the information should be structured in order to pass from one Layer 
to another. Typically, the Layers are associated with Input Interfaces and Output Interfaces 
that determine the structure of the information that comes in and out of this Layer. Table 10 
presents how the different Layers are associated with their Modules and Interfaces based on 
the proposed architecture. In addition, for each Layer, Module and Interface we provide a 
reference to the Section of this document (or another deliverable) that elaborates on its 
details.  

Layer Modules Input Interface Output Interface 
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Sensors Layer 

(Deliverable 2.1) 

BEPlusLTM driver 
(Section 3.3.1) 

Low-level device 
driver (Deliverable 

2.1) 

Stream Outlet 

(Section 3.3) 

SMI driver 

(Section 3.3.2) 

GSR driver 

(Section 3.3.3) 

Middleware 
(LabStreamingLayer) 

(Section 3) 

Signal acquisition 
(Section 3.4) 

Stream Outlet 

(Section 3.3) 

 

String Stream Outlet 

(Section 3.6.2) 

Synched Stream Inlet 

(Section 3.3 & Section 
3.6.1) 

 

Synched String 
Stream Inlet 

(Section 3.6.2) 

Timestamping 
(Section 3.5.5) 

Synchronization 

(Section 3.5.5) 

 

Interaction SDK 
(OpenViBE) 

(Section 4) 

LSL Acq. Server 

(Section 4.3.1) 

Stream Inlet from 
LSL 

(Section 4.3.1) 

Signal streamed on 
the network  

(Section 4.3.1) 

LSL Acq. Client  

(Section 4.3.1) 

Signal from LSL Acq. 
Server 

(Section 4.3.1) 

Signal streamed in 
OpenViBE boxes 

(Section 4.3.1) 

Signal Proc., Feat. 
Extrac., Classification 

(Section 4.3.2)  

Signal from LSL Acq. 
Client  

(Section 4.3.1) 

HCI Triggers 

(Section 6.2) 

Application-Network 
Layer 

(Section 6) 

Socket. IO Server 

(Section 6.1) 

HCI Triggers 

(Section 6.2) 

 

Event Triggers 

(Section 6.2) 

HCI Actions  

(Section 5.2) 

 

String Steam Outlet  

(Section 3.6.2) 

Application Layer  

(Section 5) 

Native Application 

(Section 5) 

HCI Actions 

(Section 6.2) 

 

Start and HCI 
process in front-end 

Change HCI status of 
front-end application 

(Section 5) 

Event Triggers 
(Section 6.2) 

Browser Application 

(Section 5) 
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application 

(Section 5) 

Table 10: Association of MAMEM’s Layers, Modules and Interfaces based on the proposed 
Architecture  

The first Layer is the Sensors Layer that has the role of capturing the signal from the sensor 
devices in order to push it further up in our architecture. Apart from the actual hardware 
(i.e. EEG recorder, Eye-tracker and GSR sensor), among the Modules of the Sensors Layer we 
also classify the Drivers (one for each hardware device) that are necessary to make the 
generated signals available for MAMEM’s Middleware. These Drivers have been built using 
the SDK of each device (see Deliverable 2.1 [36]) so as to provide the signals in a structure 
suitable for our Middleware. This structure is essential the Stream Outlet Interface which 
specifies how to structure a stream so as to be compatible with MAMEM’s middleware. The 
Stream Outlet Interface is the only Output Interface of the Sensors Layer, whereas as Input 
Interface we may consider the output of the low-level drivers that typically come along with 
the sensor devices (see Deliverable 2.1 [36]). 

The second Layer is the Middleware. The role of this Layer is to act as the mediator between 
the sensor devices and the rest of MAMEM’s architecture. In other words, as long as a new 
sensor device can comply with the Input Interface of this middleware, the rest of the system 
should operate seamlessly. In the proposed architecture, the framework named 
LabStreamingLayer has been chosen to serve as MAMEM’s middleware (see Section 3.1 . 
The Middleware consist of three Modules, namely Signal Acquisition, Timestamping and 
Synchronization. Signal Acquisition is the module responsible for receiving the signals from 
the Sensors Layer. The role of Timestamping is to add timestamps on the received signals. 
Finally, the most important Module of our Middleware is the Synchronisation Module that 
takes care of synchronizing the (originally de-synchronized) signals based on their 
timestamps (as well as other sensor-specific delays, see Section 3.5.5  As a result, the signals 
can be pushed further-up in MAMEM’s architecture in a synchronized mode. There are two 
input and two output interfaces associated with the Middleware. The input interfaces are 
the Stream Outlet and the String Stream Outlet. This first refers to the structure that should 
be followed by the signal coming from the Sensors Layer. The second is a specific type of 
interface that allows our Middleware to receive strings at irregular frequencies, which are 
typically used to mark the beginning or the end of an event. In our architecture, we foresee 
the use of this interface as the means for the end-user application to communicate the point 
in time where a certain action or process should be initiated in the back-end. Finally, the 
output interfaces consists of the Synched Stream Inlet and Synched String Stream Inlet, 
which specify the structure of the signal and string streams that should be followed by 
another layer in order to receive information from the Middleware. The main difference 
compared to the signals received by the Middleware is that on its output the signals are 
synchronized.  

The third Layer in our architecture is the Interaction SDK. The role of this Layer is threefold: 
a) communicate transparently with the Middleware, so as to receive the synchronized 
signals, b) implement an extensive list of processes and methods for translating the bio-
signal into triggers for the HCI, and c) communicate these triggers with the front-end of our 
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system.  In the proposed architecture, the framework named OpenViBE has been selected to 
serve as the back-bone of MAMEM’s Interaction SDK (see Section 4.1 ). OpenViBE consists of 
various different Modules. First, we should refer to the Acquisition Server which is the 
module responsible for receiving the Signal and String Inlets from our Middleware. This 
module should be instantiated as many times as the number of existing signal and string 
streams and ensures that these streams will made available to the processes and methods 
implemented within OpenViBE. Actually, in order to do this, all instantiated Acquisition 
Servers should be paired with an instance of an Acquisition Client, which is the other module 
classified under the Interaction SDK Layer. This module ensures that the incoming signal and 
string streams will be made available to the processing Modules of OpenViBE, such as Signal 
Processing, Feature Extraction and Classification. Finally, in terms of the associated 
interfaces we can distinguish between External Input Interfaces, Internal Input Interfaces and 
Output Interfaces. In the External Input Interface we can classify the Signal and String Stream 
Inlet, which is the structure of the streams that comes out of the Middleware Layer. In the 
Internal Input Interfaces (these do not appear in Figure 27 to maintain the clarity of the 
diagram) we can classify the Signal Acquisition Server that is used to pass the streams from 
the Acquisition Server to the Acquisition Client and the Signal Acquisition Client that is used 
to pass the signal from the Acquisition Client to the Processing Modules. Finally, in the 
Output Interfaces we classify the HCI Triggers Interface, which is essentially the structure of 
the messages that are communicated from the Interaction SDK to the Application-Network 
Layer and subsequently to the Application Layer in order for certain HCI commands to be 
executed in the front-end application. 

The fourth Layer in our architecture is the Applications-Network Layer. The role of this Layer 
is to handle the communication between the Interaction SDK and the front-end Application 
Layer. In particular, the Applications-Network Layer consists of one module namely, 
Socket.IO Server, which is intended to implement a server that will be able to communicate 
with a number of clients through network sockets. There are four different interfaces 
associated with this Layer. Among the Input Interfaces we can classify the Event Triggers and 
the HCI Triggers. The Event Triggers Interface is the structure of the messages that should be 
communicated by the end-user application to inform the back-end system that a certain task 
has started (e.g. the process of presenting the visual stimuli to the user has started and the 
back-end system should decide which of the flickering boxes is selected by the user based on 
his/her brain electrical signals). These messages will be subsequently formulated in a String 
Stream Outlet that will be passed on to the Middleware. The HCI Triggers Interface is the 
structure of the messages that should be communicated from the Interaction SDK to the 
Applications-Network Layer in order to pass on the information about the output of a certain 
signal analysis tasks (e.g. continuing from the previous example, these messages should 
inform the Applications-Network Layer that the flickering box that has been selected by the 
user is the one on the upper-left part of the screen). Finally, the output interfaces of the 
Applications-Network Layer, consists of: a) the HCI Actions Interface, which specifies the 
structure of the information that will be received by the native or web browser application 
and be translated in commands for the interface; and b) The String Stream Outlet Interface, 
which takes care of translating the event triggers into a string stream outlet suitable for our 
Middleware.  
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The fifth and final layer of our architecture is the Application Layer. This Layer is used to 
represent the end-user applications that will be operated through the users’ eyes and mind. 
It consists of two modules titled as Native Application and Web Browser Application that are 
used as containers for all different types of applications that will be developed in MAMEM. 
The Interfaces in this Layer are essentially identical with the ones presented in the 
Applications-Network Layer where the input/output property is reversed. Thus, the HCI 
Action Interface is now the input interface that determines the structure of the messages 
that will be translated into HCI commands, and the Event Triggers Interface is the structure 
of the messages that are used to mark the begin/end of a certain HCI-related task.       
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8 Conclusions 

In this document we have described the proposed MAMEM architecture by specifying all 
different components involved, ranging from the sensor devices and the middleware, all the 
way to the interaction SDK and the communication with the end-user applications. The logic 
instruments that have been used to describe our architecture are Layers, Modules and 
Interfaces. Layers are used to denote the parts of our system that serve a different purpose. 
Modules are used to describe the core functionalities performed in each layer and the 
Interfaces are used to specify how the information flows from one layer to another. 
Throughout the document we have provided elaborated descriptions for one of these 
Modules and Interfaces and in Section 7 we have presented how the different component fit 
together.  

MAMEM’s architecture consists of five different Layers that distinguish between the Sensors 
Layer, the Middleware, the Interaction SDK, the Application-Network Layer and the 
Applications Layer. What is particularly interesting in the proposed architecture is that we 
have decided to use as back-bone for the Middleware and the Interaction SDK, two existing 
frameworks namely, LabStreamingLayer and OpenViBE. This decision has been favoured for 
two main reasons: a) avoid replicating the development effort that has been already 
undertaken by the respective community, b) increase the impact of the new functionalities 
developed within MAMEM, since they will automatically reach a rather extended 
community. After carefully examining these two systems (and their competitors, see 
Sections 3 and 4), we have reached the conclusion that they can adequately cover the 
requirements derived from MAMEM objectives, and they feature the necessary level of 
modularity so as to extent them with MAMEM-specific functionalities. 

Finally, it is important to make a special reference to the Application-Network Layer which is 
the layer used to handle the communications between the back-end of our system and the 
end-user applications. Although this layer adds some additional complexity in the 
implementation of a new functionality, it has been deemed necessary to ensure that 
MAMEM system will be able to communicate with all different type of front-end 
applications, independently on whether are running as native applications or through a web 
browser.   
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