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Abstract— Brain-computer interfaces (BCIs) make human-
computer interaction more natural, especially for people with
neuro-muscular disabilities. Among various data acquisition
modalities the electroencephalograms (EEG) occupy the most
prominent place due to their non-invasiveness. In this work,
a method based on sparse kernel machines is proposed for
the classification of motor imagery (MI) EEG data. More
specifically, a new sparse prior is proposed for the selection
of the most important information and the estimation of
model parameters is performed using the bayesian framework.
The experimental results obtained on a benchmarking EEG
dataset for MI, have shown that the proposed method compares
favorably with state of the art approaches in BCI literature.

I. INTRODUCTION

The term Brain Computer Interface (BCI) refers to an
artificial communication channel between the human brain
and an external environment using machines (mostly com-
puters) [1]. A BCI system measures and translates the brain
activity into control signals that can be used to operate new
assistive devices for people with motor disabilities, people
who are totally paralyzed, or locked-in. Besides medical
applications, BCI systems can also facilitate the communica-
tion between humans and machines/computers through more
natural interfaces that extent beyond mouse and keyboards.
BCI systems using EEG recordings can be divided into
two major categories. In the first case, the user’s activity
is generated in response to an external stimulus, such as in
the case of Steady State Visual Evoked Potentials (SSVEPs).
In the second category, the user voluntarily changes his/her
brain waves without the presence of an external stimulus,
such as in the case of Motor Imagery (MI) BCI [2]. In our
study we are concerned with the case of MI BCI systems.

One major challenge in MI BCI is the real-time extraction
of reliable information from noisy data in the form of
relevant features. The existing feature extraction approaches
are dominated by methods estimating the distribution of
energy in various domains, such as the time domain, the
frequency domain, the time - frequency (t-f) domain, the
wavelet domain and the spatial domain [3]–[9]. One of the
most popular and efficient algorithms for MI BCI relies on
the use of Common Spatial Patterns (CSP). More specifically,
this algorithm is a feature extraction method that uses spatial
filters to maximize the discriminability of two classes [6].
However, the CSP algorithm in its basic form is sensitive to
noise while overfitting can rise in the case of small training
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sets. To overcome these problems in [7] regularized versions
of the CSP algorithm were proposed, while filter banks in
cooperation with the CSP algorithm (FBCSP) were used in
[8].

In MI BCI, the extracted features are fed into a classifier to
identify the user’s mental state. In [3], various classifiers have
been used for the identification of motor tasks. More specif-
ically, a comparison between Linear Discriminant Analysis
(LDA) and various extensions of Support Vector Machines
(SVM) is provided. The main outcome of [3] is that the
use of SVMs with a gaussian kernel is the most appropriate
classifier for the examined problem. In addition, in the same
work a genetic algorithm was used to fine-tune the SVM,
increasing considerably the overall tuning time of the system.
Lately, in the BCI community, special attention is given to
bayesian versions of LDA [10]–[13]. More specifically, in
[10] Bayesian LDA (BLDA) is used as the main building
block for the construction of semi-supervised algorithms,
while in [12] Relevance Vector Machines (RVM) are used
to select the most significant FBCSP features with a linear
discriminant criterion for classification.

In this work, we propose a new method for the clas-
sification of MI EEG data. In particular, a new sparse
prior is proposed to select the most important information
under the concept of RVM. To construct this prior we have
borrowed ideas from [14] and [15] and we have employed
the Variational Bayesian (VB) framework to deal with the
increased computational complexity of using a prior inside
a bayesian framework. The proposed method for sparse
kernel machines has been tested using a benchmarking MI
EEG dataset and has been found to compare favorably with
SVM and Variational RVM (VRVM) [16], especially in cases
where the training set is small.

II. METHODOLOGY

Let x1,x2, · · · ,xN ∈ <D be a set of EEG feature vectors,
where N is the number of training samples.

y = Xθ + e, (1)

The vector y ∈ <N contains 1’s and -1’s, with the n-th
element being 1 if the n-th feature vector belongs to the first
class, otherwise -1. The matrix X ∈ <N×D contains the EEG
features vectors, xi, i = 1, · · · , N and e denotes the noise of
the model following a gaussian distribution with zero mean
and precision (inverse variance) β. Finally, θ ∈ <D is a
vector containing the weights of each feature.

A kernel machine is a linear regression model where
the input feature vector xn has been transformed into the



kernelized feature vector φ(xn) through the use of a kernel
function κ(·, ·) [17],

φ(xn) = [κ(xn, µ1), κ(xn, µ2), ..., κ(xn, µK)] (2)

where µk is a set of K prototypes. The choice of prototypes
is crucial for the subsequent analysis. One approach is to
find clusters in the data and then to assign one prototype
per cluster center. A more simple approach is to make each
example xi be a prototype, so we get

φ(xn) = [κ(xn,x1), κ(xn,x2), ..., κ(xn,xN )] (3)

We can see that we have as many parameters as data
points. However, we can use a sparse prior for regression
weights to efficiently select a subset of the training examples.
Then, after applying Eq. (3) the linear model of Eq. (1) can
be employed. However, the design matrix X contains the
kernelized feature vectors of EEG data. More specifically,
the linear regression takes the following form:

y = Φw + e, (4)

where the matrix Φ ∈ <N×N contains the kernelized
features vectors of EEG data and e denotes the noise of the
model following a gaussian distribution with zero mean and
precision (inverse variance) β. Finally, w ∈ <N is a vector
containing the regression weights.

A. Sparse Bayesian Learning

Sparsity is a very helpful property since the processing is
faster in a sparse representation where few coefficients reveal
the information we are looking for. Hence, sparse priors help
us to determine the model order in an automatic way and
reduce its complexity. More specifically, the weights w are
treated as a random variable with Gaussian prior of zero
mean and variance a−1

i for each element in the vector w:

p(w|a) = N (w|0,Λ) =

N∏
i=1

N (wi|0, a−1
i ), (5)

where N is the symbol for Gaussian distribution. In Sparse
Bayesian Learning literature, a common approach is to
assume that the covariance matrix Λ is a diagonal matrix
with elements a−1

i , i = 1, · · · , D. Each parameter ai, which
controls the prior distribution of the parameters w, follows
a Gamma distribution, so the overall prior over all ai
is a product of Gamma distributions given by: p(a) =∏D
i=1Gamma(ai; ba, ca). This hierarchical prior over w

is well known for its sparse properties [14], [17] and this
approach was adopted in [12]. In our study we change
the above prior by introducing one more parameter. More
specifically, we assume that the covariance matrix Λ is a
diagonal matrix with elements a−1

i λ−1
i , i = 1, · · · , N . In our

analysis, parameters λi are assumed known and deterministic
quantities. Now the prior distribution of weights is given by:

p(w|a;λ) = N (w|0,Λ) =

N∏
i=1

N (wi|0, a−1
i λ−1

i ),

At this point it is worth to examine the marginal prior
distribution of weight wi by eliminating the hyperparameters
ai.

p(wi;λi) =

∫
p(wi|ai;λi)p(ai)dai

=

∫
N (wi|0, a−1

i λ−1
i )Gamma(ai; ba, ca)dai

∝
(λi
ba

)1/2[
1 +

λiw
2
i

ba

]−(ca+1/2)

(6)

Eq. 6 can be recognized as a Student-t distribution with
zero mean, shape parameter ca and scale parameter ba

λi
. We

can see that parameter λi controls the scale of the Student-t
distribution. In addition by adopting a procedure similar to
[14] we can show that the weights have the improper prior
p(wi) ∝ 1

λ
1/2
i ·|wi|

. Now, by setting λi → 1/|wi| we obtain

p(wi) ∝ 1
·|wi|1/2

which can be recognized as an extremely
”sparse” prior.

The overall precision (inverse variance) β of the noise
follows a Gamma distribution: p(β) = Gamma(β; b, c) =

1
Γ(c)

β(c−1)

bc exp
{
− β

b

}
, where b and c is the scale and

the shape of the Gamma distribution, respectively. We use
the Gamma distribution for the noise components for two
reasons: First, this distribution is conjugate to the Gaussian
distribution, which helps us in the derivation of closed form
solutions, and second it places the positivity restriction on
the overall variance and the scaling parameters.

So, the overall prior over model parameters {w,a, β} is
given by: p(w,a, β;λ) = p(w|a;λ)

∏D
i=1 p(ai)p(β). The

likelihood of the data is given by:

p(y|w, β;λ) =
β

N
2

(2π)
N
2

·

exp
{
− β

2
(y −Φw)T (y −Φw)

}
(7)

To apply the VB methodology [18] we need to define an
approximate posterior based on one factorization over the
parameters {w,a, β}. In our study we choose the following
factorization: q(w,a, β;λ) = q(w|a;λ)

∏D
i=1 q(ai)q(β).

Applying the VB methodology, and taking into account the
above factorization, the following posteriors are obtained:

q(w) = N (ŵ,Cw), (8)
q(β) = Gamma(β; b′, c′), (9)

q(a) =

D∏
i=1

Gamma(ai; b
′

ai , c
′

ai), (10)

The moments of each distribution are calculated by apply-



ing iteratively the following equations until convergence:

C(k+1)
w = (β̂(k)ΦTΦ + Λ̂(k+1))−1, (11)

ŵ(k+1) = (β̂(k)ΦTΦ + Λ̂(k+1))−1β̂ΦTy, (12)

1

b
(k+1)′
ai

=
λ

(k+1)
i

2
((ŵ

(k+1)
i )2 + C(k+1)

w (i, i)) +
1

ba
,(13)

c(k+1)′

ai =
1

2
+ ca, (14)

â
(k+1)
i = b(k+1)′

ai c(k+1)′

ai , (15)
1

b
(k+1)′

β

=
1

2
(y −Φw(k+1))T (y −Φw(k+1)) +

tr(ΦTΦC(k+1)
w ) +

1

b
, (16)

c
(k+1)′

β =
N

2
+ c, (17)

β̂(k+1) = b
(k+1)′

β c
(k+1)′

β , (18)

In the above equations the matrix Λ̂(k+1) is a diagonal matrix
with â

(k)
i · λ(k+1)

i in its main diagonal. The Eqs. (11) -
(18) are applied iteratively until convergence. For λ(k+1)

i we
follow the considerations of [15] and we set them to 1

|ŵ(k)
i |

.
With respect to other similar approaches [14] we can observe
the difference in Eqs. 12 and 13. More specifically, in our
approach each parameter ai is weighted by the corresponding
parameter λi. Finally, when a new kernelized feature vector
(test sample), z, arrives, we can classify it by the following
criterion:

ŷ =

{
1 if ŵT z ≤ 0
2 if ŵT z > 0

III. RESULTS

A. Motor Imagery EEG dataset

In our analysis we have used a well known motor Imagery
EEG dataset, the BCI competition IV dataset 2b [19]. This
dataset consists of EEG data from 9 subjects. For each
subject 5 sessions are provided, whereby the first two ses-
sions contain training data without feedback, and the last
three sessions were recorded with feedback. Three bipolar
recordings (C3, Cz, and C4) were recorded with a sampling
frequency of 250 Hz. They were bandpass-filtered between
0.5 Hz and 100 Hz, and a notch filter at 50 Hz was enabled.
The placement of the three bipolar recordings (large or small
distances, more anterior or posterior) was slightly different
for each subject. The electrode position Fz served as EEG
ground. Further information on this dataset can be acquired
in [19].

B. Performance Evaluation

As already mentioned, the EEG dataset consists of 5
sessions, the first 2 sessions generated without using feed-
back and the last 3 sessions with feedback. In our study,
we have adopted the same evaluation protocol as in [8].
More specifically, the train/test split consists of the first 3
sessions for training (2 sessions without feedback and the
1 session using feedback), while the remaining 2 sessions
(with feedback) are used for testing. The time segment of

0.5 - 2.5s after the onset of the visual cue was used to train
the algorithms. During testing, a sliding window of 2 secs,
from the visual onset of the corresponding trial until the end
of it, was used. A continuous classification output for each
sample in the form of class labels was provided by each
algorithm. A confusion matrix was built from all trials for
each time point. Using these confusion matrices, the time
course of the accuracy can be obtained. From these time
series the maximum value (maximum accuracy) was selected
as the performance measure.

For the extraction of EEG features we have used an
approach similar to [8]. More specifically, EEG data from
C3, Cz and C4 have been used and a band - pass filter
between 8 to 40 Hz has been applied. Following, the EEG
recordings were decomposed into multiple frequency pass
bands by using a filter bank with bands: 8-12 Hz, 10-
14 Hz, 12-16Hz,...,36-40Hz, a total of 15 bands. Then, in
each frequency band we apply the Common Spatial Filters
algorithm to extract the CSP components [7]. By selecting
the pair of CSP components corresponding to the maximum
and minimum eigenvalues, we end-up with 30 features for
each trial. Finally, these features are fed into the classifier.

To evaluate the performance of our method, we have
performed comparisons with state-of-the-art methods like
SVM [3], [9], VRVM [16] and the filter bank CSP (FBCSP)
approach combined with mutual information-based rough
set reduction (MIRSR) [8]. For SVM we have used the
LIBSVM library [20] with linear kernel and we have set the
regularization parameter C equal to 1. For the initialization of
the proposed method and VRVM, we assumed uniformative
distributions over all hyperparameters (i.e. cak = 10−6,
bak = 106, cβk

= 10−6, bβk
= 106), which is typical in

bayesian modeling. Also, a linear kernel was used in both
cases.

The classification results are presented in Table I, high-
lighting the best performing algorithm(s) for each subject.
The average performance of each method over the nine
subjects is also reported. We can see from this table that
our method outperforms the competing methods in most
subjects, and overall performs 0.4% better than the second
best method.

Following, we check the performance of the examined
methods with respect to the size of the training set, as well as
its composition on whether it incorporates training samples
generated with or without feedback. More specifically, in this
experiment we use as training set the trials from session 1
(generated without feedback), while the trials from sessions
4 and 5 (both of which have been generated using feedback)
are used for testing. The results of our comparison with
SVM and VRVM are reported in Table II, showing how the
proposed method adapts better to the unfavorable conditions
of a reduced and less informative training set.

IV. CONCLUSIONS

In this work we have proposed a new method for the
classification of MI EEG data that simultaneously selects the
most important EEG features and performs the classification



TABLE I
PERFORMANCE OF THE PROPOSED METHOD, SVM AND VRVM

sub # Proposed SVM VRVM FBCSP-MIRSR [8]
B01 75.94 75.62 75.31 70.00
B02 61.79 61.43 61.43 60.35
B03 61.25 59.38 59.06 60.95
B04 95.63 95.00 95.94 97.50
B05 93.75 91.87 92.81 92.80
B06 84.38 84.38 85.31 80.65
B07 77.81 78.75 78.44 77.50
B08 91.25 91.25 90.94 92.50
B09 87.19 87.81 86.88 87.20

average 81.00 80.61 80.68 79.94

TABLE II
PERFORMANCE OF THE PROPOSED METHOD, SVM AND VRVM USING A

SMALL TRAINING DATASET.

sub # Proposed SVM VRVM
B01 66.87 65.31 66.25
B02 57.86 58.57 57.86
B03 56.25 55.00 55.31
B04 95.94 93.13 94.06
B05 89.06 82.81 90.63
B06 75.31 72.81 74.06
B07 73.44 68.13 73.12
B08 80.31 76.56 83.44
B09 84.69 79.37 84.69

average 75.53 72.41 75.49

by using a linear discrimination rule. To select the most
important EEG features, we proposed a new sparse prior
for weighting the linear regress models, while the regression
weights are estimated using the Variational Bayesian method-
ology. The undertaken comparisons with SVM, VRVM [16]
and FBCSP-MIRSR [8] have shown how the proposed
method compares favorably with state-of-the-art performance
in MI BCI.
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