
Chromium based Framework to Include
Gaze Interaction in Web Browser

Chandan Kumar1
kumar@uni-koblenz.de

Raphael Menges1

raphaelmenges@uni-
koblenz.de

Daniel Müller1
muellerd@uni-koblenz.de

Steffen Staab1,2

staab@uni-koblenz.de
1Institute for Web Science and Technologies (WeST)

University of Koblenz-Landau, Germany
2Web and Internet Science Research Group (WAIS)

University of Southampton, UK

ABSTRACT
Enabling Web interaction by non-conventional input sources
like eyes has great potential to enhance Web accessibility. In
this paper, we present a Chromium based inclusive frame-
work to adapt eye gaze events in Web interfaces. The frame-
work provides more utility and control to develop a full-
featured interactive browser, compared to the related ap-
proaches of gaze-based mouse and keyboard emulation or
browser extensions. We demonstrate the framework through
a sophisticated gaze driven Web browser, which effectively
supports all browsing operations like search, navigation, book-
marks, and tab management.

Keywords
Web browser; Chromium Embedded Framework; DOM node
extraction; interactive elements; webpage rendering; gaze
input; eye-controlled interfaces

1. INTRODUCTION
The Web browser enables the end-user to perform various
tasks with online technologies such as reading news, inter-
acting in social networks, watching videos, editing photos or
even working with an office suite. Although the tasks are
different, the underlying data structure on the client side
is built with HTML, CSS, JavaScript, and the user inter-
actions are designed for mouse and keyboard or touch in-
put. Therefore, the Web browser can accomplish modern
computer tasks in analogous manner, since the Web appli-
cations’ user interface is written in the same languages and
designed to interact with the same set of input devices. How-

c©2017 International World Wide Web Conference Committee
(IW3C2), published under Creative Commons CC BY 4.0 License.
WWW’17 Companion, April 3–7, 2017, Perth, Australia.
ACM 978-1-4503-4914-7/17/04.
http://dx.doi.org/10.1145/3041021.3054730

.

ever, a novel input mechanism such as eye tracking does not
assimilate inherently in the current Web browsers.

Eye tracking as an input source and assistive technology
[4] is useful to build hands-free Web interfaces, especially for
cases where motor impairments hinder easy hand and body
motion. Web access and browser control by gaze interaction
can be achieved by two methods: either the eye tracker is
simply used to control the mouse and keyboard in the normal
graphical user interface, or the second approach of browser
extensions/customized interfaces to integrate eye gaze sig-
nals in the browser. The performance of pure emulation of
mouse input on operating system level [1, 2] highly depends
on the eye tracking accuracy, and suffers with low usability
in the sophisticated scenario of Web browsing. To overcome
this issue, there have been some recent approaches to de-
velop browser extensions and prototypes for Web browsers
[11]. In addition to acclimatize the interaction design, the
major challenge for these approaches is to identify the in-
teractive Web elements and to include eye gaze events with
the Web technology.

In this regard, the Text 2.0 framework [3] had introduced
a novel benchmark to mix eye tracking data with Web tech-
nology, where gaze-responsive webpages can be implemented
via interpreting a new set of gaze handlers (e.g., onFixation,
onGazeOver and onRead) that can be attached to parts of
the DOM tree and behave similar to existing HTML and
JavaScript mouse and keyboard event facilities. Wasser-
mann et al. [12] built upon this concept to enable eye gaze
events in eLearning environment. Although, it is a pertinent
guideline for the Web developers to include eye gaze inter-
actions in their application, it does not resolve the problem
of browsing the current Web with eye-based interactions.
Hence there is a need of Web extraction methodology to
identify the input and selectable objects, and a gaze en-
hanced user centered design to interact with the objects.
There has been some elementary approach in this direction
to identify basic elements such as overflows and hyperlinks
[11, 10]. However Web is much more complicated and re-
quires a comprehensive and scalable framework to identify
the interactive elements, and to design suitable interaction
for all browsing functionalities.

219

Figure 1: Gaze-controlled browser interface

To overcome the challenges, we present an open source
framework to adapt Web interfaces for gaze interaction, where
the input events (which are typically composed of mouse and
keyboard interactions in generic applications) are revised to
eye movements. We approach the problem of gaze-based
browsing as a unifying framework of Web engineering and
interface design. We identify the interactive elements of web-
pages via unsupervised extraction of DOM nodes, and rep-
resents these elements with explicit/implicit indicators to be
accessed by eye gaze inputs.

The Web browser environment is built upon the Chromium
Embedded Framework1 (CEF), which provides an appropri-
ate architecture to enhance the Web with interfaces for gaze
interaction [6]. Adapting the interface is primary for the
success of eye-based interactions [7, 9]. In this regard, the
proposed Chromium based framework provides more utility
and control to include eye gaze events in the browser, rather
than building browser extensions. It has several advantages,
e.g., we can receive webpage as pixels that give a complete
power over webpage rendering, which is essential for dy-
namic interface adaptations for gaze interactions. Complex
applications such as a gaze-based browser are also easier to
maintain in C++ implementation with CEF. Moreover, it
is convenient to integrate new devices in the framework (for
browser extensions it is quite unnatural to connect to de-
vices via JavaScript, and to call native system dependent
libraries). The proposed framework is available as an open
source system2, which also provides in-depth information of
the architecture.

2. EYE-CONTROLLED BROWSING
To provide a smooth and reliable eye-controlled browsing
experience, we integrate the visual appearance and con-
trol functionality of webpages in an eye tracking environ-
ment. More specifically, our approach combines, webpage
element extraction and eye gaze emulation of conventional
input devices within the browser. For webpage interaction,
the system examines the location of selectable objects on
webpages, such as text input, hyperlinks, scrollable over-
flows, edit box, etc. and applies gaze-controlled interface
paradigms for straightforward handling. Figure 1 shows an
eye-controlled browser application developed using proposed
Chromium based framework. The interface was developed
through user centered design for eye interaction [9], i.e., in-

1https://bitbucket.org/chromiumembedded/cef
2https://github.com/MAMEM/GazeTheWeb

Figure 2: Navigation in Web. Left: Click emulation
activated. Middle: Links are highlighted and page
is zoomed continuously. Right: Click is performed.

terface components such as size, shape, appearance, feed-
back etc. that are vital to enhance eye tracking accuracy for
input control [6].

The interface design of the browser (Figure 1) can be di-
vided into three components. On the left, the Web panel
covers common actions like going back and forward or open-
ing the tab overview of the browser. The Tab panel on the
right side of the interface represents the possible actions on
the current webpage like text selection, click emulation or to
enable automatic scrolling. The central part of the interface
is the Web view containing the actual webpage, rendered by
the underlying Chromium project. Interactive overlays are
added for input fields within the page. The T-letter inside
a circle representing the text input field to submit query on
DuckDuckGo3 search page.

A scrolling sensor is displayed on the bottom of the page
indicating the control to scroll the page down (additional
sensor on the top would appear to scroll up). The longer
a user focuses on the sensor, the higher is its penetration
and scrolling is accelerated towards a maximum speed. A
vertical progress bar (visually embedded on the scrolling sen-
sor) provides instant feedback of the current scrolling status.
Furthermore, the user can switch on the automatic scroll
functionality (and the dedicated scroll sensors would disap-
pear) for more smooth and natural reading experience. The
automatic approach is also the default behavior for scrolling
within the page (e.g., Facebook chat box). We detect DOM
elements that overflow, and imply automatic scrolling, since
the space is too limited for additional manual scrolling sen-
sor fields.

A significant aspect of a Web browser is hyperlink nav-
igation. However, due to the potentially dense link struc-
ture of webpages, gaze-based link clicking suffers from the
eye tracker’s accuracy limitations. In the proposed browser,
this accuracy problem is tackled using continuous zooming
behavior. A click is initiated with the activation of the Click
Emulation button in the Tab panel, see left image in Figure
2. Zooming process starts with any gaze coordinate upon
the Web view, as displayed in the middle image of Figure
2. The zooming is centered at the gaze position on the web-
page. When the zoom level is over a certain threshold, a
click is performed at the focused page coordinate. A visual

3https://duckduckgo.com

220

https://bitbucket.org/chromiumembedded/cef
https://github.com/MAMEM/GazeTheWeb
https://duckduckgo.com

Figure 3: Management of tabs

feedback is provided by a shrinking circle around the click,
as visible in the right most image of Figure 2.

The browser not only supports the efficient interaction
with the webpage, it effectively supports all essential brows-
ing menu operations like history, bookmarks and tab man-
agement for a wholesome surfing experience. Figure 3 shows
the tab overview interface with the possibility of editing the
URL, bookmarking, reloading, removing the tab, or open-
ing new tabs. The detailed demonstration of the browser
functionality can be viewed online4.

3. THE UNDERLYING FRAMEWORK
Modern Web browsers are designed as high performance
frameworks to cope with the task of interaction and render-
ing of numerous complex webpages. The current major ver-
sion of CEF makes use of a multi-process and multi-thread
approach to deliver a stable and fast user experience. Every
tab runs in an independent process (Render Process), in-
cluding instances of the Blink engine for rendering and the
V8 engine for JavaScript handling. They are connected to a
single Main Process, which handles user input, controls the
tabs and performs rendering of the general user interface.
If one tab is loading or its JavaScript execution crashes,
the other tabs and the user interface keep running and are
able to react to further user input. Figure 4 showcases the
structure of our CEF based framework. The Mediator in-
terface connects the Visual Browser part with our CEF Im-
plementation. This interface passes commands like opening
a new tab, changing a URL or input emulation to the corre-
sponding CEF structures within CEF Implementation and
provides DOM nodes of interest and pixels of rendered web-
pages. The Visual Browser creates the window as output
for the OpenGL context, connects to eye tracking devices
via dynamic linking into the vendors’ SDK at runtime, han-
dles the gaze-controlled user interface and eventually draws
the pixels of the webpage on the screen.

3.1 Data Flow
Various data instances are transferred to the Visual Browser
classes by the CEF Implementation to adapt Web browsing
for eye-based input.

Renderer: We run CEF in offscreen-rendering mode, since
no drawing onto a window directly by CEF is desired. The
Renderer implementation hands the received pixel data of a

4https://youtu.be/x1ESgaoQR9Y

Figure 4: Architecture of proposed Framework

rendered webpage to a WebView instance in Visual Browser,
which fills them into an OpenGL texture object.

DOM Nodes: DOM nodes are useful in different scenarios
of adapted user interaction. Extraction while the page is get-
ting loaded and updated is desirable to provide a real-time
interface that corresponds to the displayed webpage. To-
day’s Web makes heavy use of dynamically loaded content,
and hence simple polling of DOM tree parsing at a specific
time of execution (like end of initial page loading) is not suf-
ficient. We propose to use direct callbacks from JavaScript
into C++ in combination with JavaScript-side observation
of the DOM tree for dynamic changes. The Message Router
interface of CEF provides direct callbacks of JavaScript into
C++ by calling a predefined function in JavaScript with
an argument that is then passed to a predefined method in
the Main Process of the application. We encode the data
into a string, where the single arguments are separated by a
delimiter symbol.

This mechanism is combined with the Mutation Observer5,
which observes changes in DOM tree. It is appended to the
root of DOM tree at V8 context creation on Render Pro-
cess. When a change takes place in the DOM tree, a prede-
fined JavaScript function is called while providing a list of
MutationRecords that holds information about the changes.
Type of change in DOM tree is then classified, DOM nodes
of interest are added to a global list and C++ is called
back with encoded minimal information about the change.
As the string is received and parsed in Main Process, po-
tentially more information about change are requested via
Inter-Process Communication (IPC). The Render Process

5https://developer.mozilla.org/en-US/docs/Web/API/
MutationObserver

221

https://youtu.be/x1ESgaoQR9Y
https://developer.mozilla.org/en-US/docs/Web/API/ MutationObserver
https://developer.mozilla.org/en-US/docs/Web/API/ MutationObserver

looks up to required DOM node information in the global
list, since it has a direct access to V8 context of webpage,
and then replies over IPC with requested information about
the added DOM node. Afterwards, the DOM node struc-
tures in the framework are updated and shared with the
corresponding Tab object in the Visual Browser part.

3.2 Data Usage
The extracted webpage data is employed in various situa-
tions to adapt browsing to eye gaze input.

• WebView receives pixels of rendered webpage from
Renderer, as described earlier. The webpage is ren-
dered onto a rectangular geometry with a custom OpenGL
shader program. This is for example useful at click
emulation to magnify the webpage with a continuous
zooming effect to compensate the imperfect accuracy
of eye trackers, as it can be simply implemented by a
texture coordinate transformation.

• Links are used to highlight their bounding boxes while
click emulation executes continuous zooming, and to
correct click coordinates which are not on the extracted
link but in the neighborhood of bounding box.

• Text Input Fields are detected to place gaze-controlled
overlay buttons that call the virtual keyboard for text
input. The text is filled in by JavaScript injection over
the Mediator interface.

• Fixed elements are usually applied to static page
elements like navigation bars. When a user fixates
on static DOM elements, global automatic scrolling is
avoided.

• Overflow elements are necessary to be scrolled to re-
veal the entire containing information. Therefore, we
employ an automatic scrolling mechanism, which cen-
ters the coordinate of gaze within overflow elements.

There is a huge potential for further usage scenarios of ex-
tracted DOM nodes, i.e., the general availability of DOM
nodes within the same programming unit is not only relevant
for eye gaze input, but it provides a possibility of in-depth
integration of next generation input devices (e.g., brain com-
puter interfaces) in Web interaction.

3.3 Pipeline System
We have implemented different actions for gaze driven events
that are applicable in various interaction scenarios, e.g., the
continuous zooming is suitable for both click emulation and
text selection. Hence, we propose a pipeline system that
consists of independent modules, called actions. Here are
some examples of currently available actions.

• Keyboard is an inclusive text display with simple
editing features. It optionally takes an initial text as
input, and outputs the collected text composited by
the user of input and typed text. It successfully fin-
ishes if the user either hits the ok or the submit button.

• ZoomCoordinate holds the behavior described for
continuous zooming in click emulation. Output is a co-
ordinate on the webpage. Actions have limited control
over Web view rendering, so this action does highlight

the links while activation. This supports the selec-
tion process of the user by providing a visual feedback
about clickable content.

• LinkNavigation takes a coordinate on the webpage
and checks, whether the coordinate is upon a link. If
the result is false, the distance to the extracted DOM
links is measured. When one’s distance is lower than a
threshold, the coordinate is moved to the center of this
link. Eventually, a left mouse button click is emulated
at the coordinate.

A pipeline is a linear combination of one or more of the
above-mentioned actions. When a pipeline is added, the
first action in the pipeline is activated and executed. Once
the action is finished and deactivated, the next action gets
activated and so forth. Inherently the pipeline can be consid-
ered as a data stream that collects input data from the user
while executing the desired action. For example the click
emulation consists of first the ZoomCoordinate and second
the LinkNavigation action.

3.4 Limitations and Challenges
We propose an efficient architecture to include eye gaze
events in modern webpages. However, Web is complex and
it brings several challenges due to the non-standardization
or unintended use of Web technologies. Here we describe
some of these limitations and future challenges to improve
the interaction further.

Semantic Information
For a convenient experience with gaze input, we aim to pro-
vide different options to users, e.g., the text input action can
apply the entered text to the input field or can be directly
submitted for processing (e.g., search query). However in
several instances input submission depends on the input in
other fields, like a password cannot be submitted without
username or the scenario of completing a registration form
with multiple required entries. In such scenarios, deacti-
vating the submit button or automatic transformation to a
“next-text-input-field” function would provide a more user-
friendly interaction. To accomplish this, we need precise se-
mantic information about the input fields, which is hard to
extract from the DOM tree. We could employ trivial rules,
like in the scenario of username and password combination,
search for DOM nodes with tag “password” and other in-
put fields within the same form. However, a more robust
approach is required to gauge the semantic information.

Text Input Field Density
Specific forms for registration or communication tools fea-
ture a high number of text input fields, which are represented
by overlay icons in our framework. These overlay buttons
have to be rendered at a minimum size in order to cope
with the accuracy of the eye tracking device. Hence, in the
scenario of complex forms, the buttons might overlap with
each other and interaction becomes difficult and error prone.
Hence we currently work on the design methods to resolve
such issues with high-density of input fields.

Extensive use of CSS and JavaScript
Extensive use of modern Web technologies limits the suc-
cess of DOM node extraction. A prominent example is the

222

search input field on the Google page6. At the time of our
assessment, there are at least two text input fields stacked
onto each other for search box. It appears that one field
is responsible to display suggestions in gray color and the
other one is used for actual user input. It utilizes the CSS
mechanism of z-value to advise the browser to render the ac-
tual input field in front of the other, which is not detectable
in naive DOM node extraction. One has to do additional
CSS property look-ups in order to find the text input field
to be filled by keyboard. It is not just sufficient to check the
z-value, since there may be multiple real text input fields
and some covered ones, which are not accessible to a user
but share the same z-value. At present we do in-depth inves-
tigation to resolve such issues for popular websites, however
a universal solution is required to deal with these scenarios.

Additionally a major challenge arises from single CSS val-
ues, as they are not directly observable by the available Mu-
tation Observer. Currently, we are able to track changes of
the assigned CSS classes. An elaborate solution would be to
fork the Blink engine code that handles the DOM tree, and
cooperate native callbacks into the Render Process when any
CSS value of a DOM node of interest is changed.

4. EVALUATION AND CONCLUSIONS
We conducted an experimental evaluation to quantify the
performance and usability of the proposed system. We used
OptiKey [1] as a benchmark, which is a state of the art open
source tool for gaze interaction using the conventional ap-
proach of mouse and keyboard emulation by eyes. Eleven
participants (4 female, 7 male) took part in the study, and
they were asked to perform common browser tasks such as
search, navigate, bookmark [5]. Tasks were identical for
both systems, and the dwell time was configured to one sec-
ond to negate any bias between the system. Eye movements
were tracked with SMI REDn remote eye tracker with a sam-
pling frequency of 60Hz, which was attached to the front of
a 24 inch monitor. The experimental results indicate that
the proposed system performs consistently better than Op-
tiKey in not only task accomplishment, but also in terms
of usability and cognitive load measures. The average time
required to complete the specified task by proposed system
was 252.18 seconds, significantly better than 424.15 second
required for OptiKey (p-value 0.0023). Furthermore, in the
SUS usability analysis our system reached the average score
of 83.86, which is considered to be highest grade in SUS
guidelines7, while the OptiKey’s score of 57.96 is well below
the standard average. The participants also felt significantly
less workload (measured by NASA-TLX test8) in the pro-
posed system with an average score of 43.0, compared to
OptiKey’s score of 54.5.

The presented Chromium based framework offers the sig-
nificant prospect of including gaze interaction in Web appli-
cations. Hence the user could perform all essential browsing
operations by gaze in an easy and effective manner, as shown
by the usability evaluation of our eye-controlled browser.
We are currently working on further enhancements to in-
clude sophisticated gaze interaction features such as secure
login/password entry, and better Web video interaction by
customizing native HTML5 controls. The proposed frame-

6https://www.google.com
7http://www.measuringu.com/sus.php
8https://www.nasatlx.com

work comprises an extendable architecture, and in future we
want to enhance its usability with additional modalities, i.e.,
integrating emotions into the browsing experience [8].

5. ACKNOWLEDGMENTS
This work is part of project MAMEM9 that has received
funding from the European Union’s Horizon 2020 research
and innovation program under grant agreement number: 644780.

6. REFERENCES
[1] Optikey: Type, click, speak.

https://github.com/OptiKey/OptiKey.

[2] R. Bates and H. O. Istance. Why are eye mice
unpopular? a detailed comparison of head and eye
controlled assistive technology pointing devices.
Universal Access in the Information Society,
2(3):280–290, 2003.

[3] R. Biedert, G. Buscher, S. Schwarz, M. Möller,
A. Dengel, and T. Lottermann. The text 2.0
framework: writing web-based gaze-controlled realtime
applications quickly and easily. In Proceedings of the
2010 workshop on Eye gaze in intelligent human
machine interaction, pages 114–117. ACM, 2010.

[4] R. Jacob and S. Stellmach. What you look at is what
you get: Gaze-based user interfaces. interactions,
23(5):62–65, Aug. 2016.

[5] M. Kellar, C. Watters, and M. Shepherd. The impact
of task on the usage of web browser navigation
mechanisms. In Proceedings of Graphics Interface
2006, GI ’06, pages 235–242, Toronto, Ont., Canada,
Canada, 2006. Canadian Information Processing
Society.

[6] C. Kumar, R. Menges, and S. Staab. Eye-controlled
interfaces for multimedia interaction. IEEE
MultiMedia, 23(4):6–13, Oct 2016.

[7] M. Kumar. Gaze-enhanced user interface design. PhD
thesis, Citeseer, 2007.

[8] A. Lugmayr and S. Bender. Free ux testing tool: the
ludovico ux machine for physiological sensor data
recording, analysis, and visualization for user
experience design experiments. In Proceedings of the
SEACHI 2016 on Smart Cities for Better Living with
HCI and UX, pages 36–41. ACM, 2016.

[9] R. Menges, C. Kumar, K. Sengupta, and S. Staab.
eyegui: A novel framework for eye-controlled user
interfaces. In Proceedings of the 9th Nordic Conference
on Human-Computer Interaction, NordiCHI ’16, pages
121:1–121:6, New York, NY, USA, 2016. ACM.

[10] A. M. Penkar, C. Lutteroth, and G. Weber. Eyes
Only: Navigating Hypertext with Gaze, pages 153–169.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2013.

[11] M. Porta and A. Ravelli. Weyeb, an eye-controlled
web browser for hands-free navigation. In Proceedings
of the 2Nd Conference on Human System Interactions,
HSI’09, pages 207–212, Piscataway, NJ, USA, 2009.
IEEE Press.

[12] B. Wassermann, A. Hardt, and G. Zimmermann.
Generic gaze interaction events for web browsers. In
Proceedings of the 21st international conference on
World Wide Web. Citeseer, 2012.

9http://www.mamem.eu

223

https://www.google.com
http://www.measuringu.com/sus.php
https://www.nasatlx.com
http://www.mamem.eu

	Introduction
	Eye-controlled Browsing
	The underlying framework
	Data Flow
	Data Usage
	Pipeline System
	Limitations and Challenges

	Evaluation and Conclusions
	Acknowledgments
	References

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move left by 7.20 points
 Normalise (advanced option): 'original'

 32

 D:20170304125651
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 795
 352
 Fixed
 Left
 7.2000
 0.0000

 Both
 1
 AllDoc
 1

 CurrentAVDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 0
 5
 4
 5

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move down by 23.83 points
 Normalise (advanced option): 'original'

 32

 D:20170304125651
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 795
 352

 Fixed
 Down
 23.8320
 0.0000

 Both
 1
 AllDoc
 1

 CurrentAVDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 0
 5
 4
 5

 1

 HistoryList_V1
 qi2base

