
eyeGUI: A Novel Framework for

Eye-Controlled User Interfaces

Raphael Menges

Institute for Web Science

and Technologies (WeST)

University of Koblenz-Landau

Koblenz, Germany

raphaelmenges@uni-koblenz.de

Korok Sengupta

Institute for Web Science

and Technologies (WeST)

University of Koblenz-Landau

Koblenz, Germany

koroksengupta@uni-koblenz.de

Chandan Kumar

Institute for Web Science

and Technologies (WeST)

University of Koblenz-Landau

Koblenz, Germany

kumar@uni-koblenz.de

Ste↵en Staab

Institute for Web Science

and Technologies (WeST)

University of Koblenz-Landau

Koblenz, Germany

staab@uni-koblenz.de

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstracting
with credit is permitted. To copy otherwise, or republish, to post on servers or
to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
NordiCHI’16 , October 23 - 27, 2016, Gothenburg, Sweden.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-4763-1/16/10...$15.00.
DOI: http://dx.doi.org/10.1145/2971485.2996756

Abstract

The user interfaces and input events are typically
composed of mouse and keyboard interactions in generic
applications. Eye-controlled applications need to revise
these interactions to eye gestures, and hence design and
optimization of interface elements becomes a substantial
feature. In this work, we propose a novel eyeGUI
framework, to support the development of such interactive
eye-controlled applications with many significant aspects,
like rendering, layout, dynamic modification of content,
support of graphics and animation.

Author Keywords

Gaze input; eye tracking; interactive elements; visual
feedback; eye-controlled interfaces.

ACM Classification Keywords

H.5.2 [Information interfaces and presentation]: User
Interfaces

Introduction

To interact with computer applications having modern
graphical user interfaces, users need to be able to perform
point-and-select kind of operations. Interaction with
interface elements such as icons and buttons is often
performed with conventional input devices like mouse.
The advantage of such conventional input mechanisms is

that there is almost no noise between the physical
movement of the device and the on-screen object. This
allows selection of small targets in a window environment
to the very finest levels (to the pixel). This kind of
interaction has been a popular phenomenon and the
associated user interfaces has been well accepted by
standard users. However, users who are not able to use
their hands to interact with a computer (due to motor
disabilities) need alternatives for performing such
operations to gain access to the graphical user interface
[4].

In that regard, real-time eye gaze signals from eye
tracking systems provide a natural path to interact. Eye
gaze signals has been often considered to provide natural
ways to interact and assist people with disabilities to
communicate with computers. Moreover, with the
advancement in technology, able-bodied users would soon
be accepting eye-based interaction as additional modality
[6]. With the evolution of modern eye tracking devices, it
is possible to record eye movements of users, which can
be used to generate gaze events, and to analyze the data
to deduce more high-level events [9]. Thus, there is a lot
of potential in using eye gaze in human-computer
interfaces, which is already evident with several
applications of gaze-based input [5].

The methods for computer control by gaze interaction can
be divided into two main categories: either the eye tracker
is simply used to control the mouse in the normal
graphical user interface [3], or the second approach of
composing customized interfaces for eye gestures [6]. In
the first case of mouse control, the major problem occurs
due to no universal method for issuing mouse clicks, and
the performance of such interaction highly depends on the
eye tracking accuracy. Therefore, the second approach of

eye-controlled customized interfaces, based on the direct
link between the eye tracker and the application is very
significant for the usability and performance.

Eye-controlled interfaces

The interfaces generally use the architecture that allows it
to acclimatize to the type of input device used for
operating the computer. The look and feel of the
interface actually depends on the device that is selected as
primary input. For example, when mouse and keyboard is
the primary input device, the interface-controllable
elements such as buttons, icons, menus, scroll bars, lists,
and dialog boxes may appear as with a conventional
interface. However, when a di↵erent physical input device
like eye tracker is the primary source, the look and feel of
these elements needs to be changed to be more
appropriate for that device [7]. In that regard, eye gaze as
input is a challenging phenomena due to the limitation of
eye trackers like visual angle, calibration errors, drift, and
inherent eye jitter. Hence the devices does not exactly
correspond to where the user is looking, and therefore
user not able to select small targets very precisely.
Furthermore, Midas Touch is another major problem with
eye-based interaction since it is di�cult to discriminate
between inspections and selections [9].

With regard to accuracy, interface adaptations techniques
have often been explored, e.g., interface manipulations
like enlarging targets to make them big enough is a kind
of solution that addresses the accuracy issue of eye gaze
interaction in the acquisition of small targets. Moreover,
when the user looks at the screen, the area immediately
around the gaze point can be linearly magnified and
re-displayed in a zoom window [8]. The purpose of
employing a magnified view is to accommodate the
accuracy problem of the eye tracker so as to exactly map

gaze points to a desired target, consequently the desired
actions can be easily and correctly performed. The area
immediately around the gaze point can also be
non-linearly distorted. Distorting the gaze area around the
desired target could benefit the performance of user’s gaze
[2]. Another way to magnify a target is to temporarily
expand the target itself rather than zooming the area
around it. When the user’s gaze falls on the vicinity of the
desired target, the target size could increase enough to
involve the gaze point into the enlarged target. With

Figure 1: Schau genau!:

Interactive typing of nickname for

high score table

regard to Midas Touch problem, most errors are induced
by lack of adequate feedback from the screen. Hence,
providing feedback to users with respect to their gaze
activity is a significant element of eye-controlled interfaces
[10]. Especially since the slightest discrepancy between
users eye movements and what they see/feel/hear can
disrupt the experience they are engaged in. Hence the
designers need to re-purpose the feedback mechanisms for
sensory information from eyes. The usage of adequate
visual graphics and animation as feedback could assist
users to discriminate between inspections and activations
and to reduce error in interactive operations, e.g., buttons
get activated when the gaze hits them, and they shrink
after activation to trigger the button. Colored overlay
increasing in size would work as a visual representation of
the remaining time until the trigger.

We have employed the above-mentioned heuristic of
eye-controlled interfaces in an interactive game
application: Schau genau! a game where eye tracking
input is used to control a butterfly1. The player collects
flowers and classifies photographs of flowers for gathering
points [11]. In this immersive game environment several
interaction elements were included with respect to the
button size, shape, visual feedback, typing mechanism,

1https://github.com/raphaelmenges/schaugenau

fixation and dwell time, etc. For example figure 1 shows
the game screen space for the player inserting a nickname
for the high score table. The alphabet is shown on the top
where the user can scroll horizontally through the letters.
The fixated letter enlarges until a dwell time is over and
the letter is selected. If the player fixates another letter in
the meantime, the old one is scaled down again. On the
bottom of the screen, the player can either confirm the
input or delete the latest written later by individual
selection buttons. All these interface and interaction
components of Schau genau! were very well received by
the participants yielding to high usage and explicit positive
feedback. The game was installed in a horticultural
garden show in Landau2 in a stand-alone arcade cabinet.
The game was played ⇠2900 times during the exhibition
period, which is a clear indication of the popularity and
acceptability of adopted interaction elements.

The results validate the significance of gaze adapted
interactive elements for enhanced usability of eye-based
interaction. The need for such gaze enhanced user
interface design has been discussed in the research
community [7]. However there are no unifying framework
to support such gaze-centered design and developments.
In this work we propose eyeGUI to design and develop
graphical user interfaces suitable for eye-based input
control. eyeGUI specifically focuses on the concept of
eye-controlled user interfaces to ease the development of
interactive GUI elements, compared to other available
open source approaches like OpenGazer3, which addresses
the generic problem of measuring eye gaze.

2http://lgs-landau.de
3https://github.com/opengazer/OpenGazer

https://github.com/raphaelmenges/schaugenau
http://lgs-landau.de
https://github.com/opengazer/OpenGazer

eyeGUI

The proposed eyeGUI framework enables the manipulation
and rendering of user interfaces for eye tracking input. A
variety of elements, like buttons, images and texts, to
build a proper interface can be used from the framework.
Most of them can be customized in their size, appearance
or behavior, e.g., buttons can be given an arbitrary icon
that scales automatically when the overall size of the
interface changes, though the ratio of height and width of
the image stays the same. eyeGUI layouts are supposed to
be overlay for specific application interacting with the gaze
input from the eye tracking device. Moreover stand-alone
application can also be developed using eyeGUI layouts.

Figure 2: eyeGUI: Interactive

elements like buttons (upper

row), sensors (middle row) and

character typing (bottom)

All elements in eyeGUI are designed especially for eye
tracking in their size, appearance, and user interaction,
e.g., buttons get activated when the gaze hits them, and
they shrink after triggering to provide the user with
interaction feedback. A colored overlay increasing in size
works as a visual representation of the remaining time
until the triggering. It also o↵ers other eye tracking
specific features like optionally showing the gaze path
during usage. Figure 2, showcases some examples of these
elements; the first row signifies a button triggering
through eye-gaze interaction, where the animated
highlighting over the icon shows the focus duration and
the button is pressed after the duration is exceeded. The
second row indicates a sensor like button, relevant for
progressive elements like scrolling. The four images at
bottom show di↵erent stages of eye-typing with
magnifying e↵ect of character selection.

Figure 3, outlines the architecture of eyeGUI framework.
It is developed in C++ 11 and based on OpenGL. It o↵ers
to build user interfaces for eye tracking by adding
XML-files as layouts and manipulating elements (e.g.,

buttons), within these layouts via listeners. The listeners
can be accessed in the application environment to give
every button an own functionality and also to interact
with external APIs. Eye tracking device (e.g., SMI REDn
Scientific, Tobii EyeX) would send raw gaze data to
application, which implements a listener for that stream
and receives data. Filtered gaze signal through application
is piped to eyeGUI layouts, which handle interaction and
call events in the interface (e.g. button pressed), and the
application would react to those user interactions by call
backs. The eyeGUI framework has been made available at
a GitHub repository4. For development purposes, the
control paradigm can be switched to mouse-control to
emulate eye signals.

Figure 3: eyeGUI Architecture

The integration of eyeGUI is similar to other OpenGL user
interface libraries5. The developer is free to choose how to
create a window and on which way to initialize the

4https://github.com/raphaelmenges/eyeGUI
5ImGui: https://github.com/ocornut/imgui

https://github.com/raphaelmenges/eyeGUI
https://github.com/ocornut/imgui

OpenGL context. Before the render loop is entered, the
GUI object for eyeGUI must be instantiated and an
arbitrary number of layouts from XML files might be
added. During the render loop, for every frame the most
recent gaze input is used to update eyeGUI, which
provides feedback whether the input has been used by any
layout. Based on that feedback, the developer can decide
how to update the application content. For interactions
with the application, listeners might be employed to
enable eyeGUI to call back into the application if a button
is triggered or other events occurred. A detailed sequence
of a minimal eyeGUI application is listed in Figure 4. All
functions are accessible through a single header files with
C++ functions and the memory allocation for displayed
images and other is handled internally.

Figure 4: Sequence diagram of

exemplary eyeGUI usage in

custom application

Figure 5: A Web browser application developed with eyeGUI

framework

eyeGUI Applications

Adhering to the eyeGUI framework, we propose the
development of customized eye-controlled applications for
end-user needs. To demonstrate such applicability we
showcase two prototype applications for Web and social

media browsing using eye gaze signals. Figure 5 shows an
adapted Web browsing interfaces for gaze interaction
(developed using eyeGUI with Chromium Embedded
Framework to realize the browser application capabilities).
The custom eyeGUI layout at left and right indicates the
options to select various browsing operations with gaze
commands6. Figure 6 shows the Twitter application
interface for gaze interaction (developed using eyeGUI
with Twitter REST APIs), where user can perform all
essential operations e.g., like, tweet, search, follow,
discover etc. using eye gestures7. In the small scale lab
studies these applications have achieved high usability and
performances. In near future, we plan to conduct large
scale studies for extensive evaluation of these applications.

Figure 6: A Twitter application developed with eyeGUI

framework

6Detailed functionality of Browser prototype: https://youtu.
be/zj1u6QTmk5k

7Detailed functionality of Twitter application: https://youtu.
be/NQQfB7nf3qw

https://youtu.be/zj1u6QTmk5k
https://youtu.be/zj1u6QTmk5k
https://youtu.be/NQQfB7nf3qw
https://youtu.be/NQQfB7nf3qw

Conclusions and Future Work

In this paper we proposed a novel eyeGUI framework, to
ease the developments of interactive applications based on
eye tracking system. This framework today can be used to
render interactive elements for several applications as
demonstrated via Browser and Twitter applications. One
of the most eminent future work that lies in the curve of
eyeGUI is the inclusion of sensor module to its framework
where in the application that hosts the eye tracking sensor
code will send signal to the eyeGUI module, and all the
filtering and processing of the signal will take place in it.
This will add a big step in the advantage of using this
framework as developers will no longer need to add on
their integration of sensors to their main application and
they can take help of the eyeGUI framework. Another
work that lies in the future of eyeGUI is to adapt it for
multimodal interaction. Multiple sensors can be used in
conjunction with eye tracking system.

Acknowledgment

This work is part of project MAMEM [1] that has received
funding from the European Unions Horizon 2020 research
and innovation program under grant agreement number:
644780.

References

[1] Multimedia authoring and management using your
eyes and mind. http://www.mamem.eu/.

[2] Ashmore, M., Duchowski, A. T., and Shoemaker, G.
E�cient eye pointing with a fisheye lens. In
Proceedings of Graphics interface 2005, Canadian
Human-Computer Communications Society (2005),
203–210.

[3] Bates, R., and Istance, H. O. Why are eye mice
unpopular? a detailed comparison of head and eye

controlled assistive technology pointing devices.
Universal Access in the Information Society 2, 3
(2003), 280–290.

[4] Brodwin, M. G., Star, T., and Cardoso, E. Computer
assistive technology for people who have disabilities:
Computer adaptations and modifications. Journal of
rehabilitation 70, 3 (2004), 28.

[5] Chandra, S., Sharma, G., Malhotra, S., Jha, D., and
Mittal, A. P. Eye tracking based human computer
interaction: Applications and their uses. In 2015
International Conference on Man and Machine
Interfacing (MAMI), IEEE (2015), 1–5.

[6] Jacob, R., and Stellmach, S. What you look at is
what you get: Gaze-based user interfaces.
interactions 23, 5 (Aug. 2016), 62–65.

[7] Kumar, M., and Winograd, T. Guide: gaze-enhanced
ui design. In CHI’07 Extended Abstracts on Human
Factors in Computing Systems, ACM (2007),
1977–1982.

[8] Lankford, C. E↵ective eye-gaze input into windows.
In Proceedings of the 2000 symposium on Eye
tracking research & applications, ACM (2000),
23–27.

[9] Majaranta, P., and Bulling, A. Eye tracking and
eye-based human–computer interaction. In Advances
in physiological computing. Springer, 2014, 39–65.

[10] Majaranta, P., MacKenzie, I. S., Aula, A., and Räihä,
K.-J. Auditory and visual feedback during eye typing.
In CHI’03 Extended Abstracts on Human Factors in
Computing Systems, ACM (2003), 766–767.

[11] Schaefer, C., Menges, R., Schmidt, K., Kuich, M.,
and Walber, T. Schau genau! an eye tracking game
with a purpose. In Applications for Gaze in Games
(2014).

http://www.mamem.eu/

	Introduction
	Eye-controlled interfaces
	eyeGUI
	eyeGUI Applications
	Conclusions and Future Work
	Acknowledgment
	References

